
8. Implementation Details
Our proposed method contains three components: hierar-
chical stochastic subgraph generation (Sec. 8.1), hierarchi-
cal semantic environments (Sec. 8.2), and graph invariant
learning. In this section, we extend the details of our archi-
tectures. We provide a detailed description of our model in
Line 18 at the end of this section.

8.1. Hierarchical Stochastic Subgraph Generation

We employ graph isomorphism networks (GINs) [42] for
graph encoding, utilizing different GINs for different hi-
erarchies. A two-layer multilayer perceptron (MLP) with
ReLU activation functions serves as the scoring function
for edge selection in each hierarchy, with different weight
parameters. A sampler is generated from a Bernoulli distri-
bution based on the computed edge scores. Edge selection
uses the Gumbel-Softmax function with a threshold T and
temperature τ . During training, we set the temperature at
0.05 for edge selection and we conduct a grid search for the
threshold. Variant subgraphs are extracted by the selected
edges at each hierarchy, while invariant subgraphs are ob-
tained by directly subtracting the selected edges from the
original input graph. Notably, we retain the selected edges
from previous hierarchies for stable training.

8.2. Hierarchical Semantic Environments

8.2.1 Intra-Hierarchy Environment Diversification

To predict environment labels in each hierarchy, we em-
ploy a simple neural network, denoted as fe, for multi-
classification, drawing inspiration from the work [17]. Fol-
lowing Eq. 6, the input of the neural network fe is formed
by concatenating the hidden embedding of the variant sub-
graph and the one-hot encoding of the label. The output
dimension of the neural network fe corresponds to the num-
ber of environment labels at each hierarchy. During infer-
ence, predicted environment labels at each hierarchy are ob-
tained by the neural network’s output.

8.2.2 Inter-Hierarchy Environment Augmentation

As emphasized by Huang [17], multi-class classification of-
ten outperforms clustering-based methods. However, in hi-
erarchical settings, we encounter challenges in consistently
assigning samples and their neighbors from previous hier-
archies to the same class. To address this issue, we propose
a contrastive objective that enhances environmental seman-
tics in the latent embedding space by preserving neighbor-
hood consistencies across hierarchies. Taking inspiration
from prior studies [6, 7], we employ contrastive learning
on two dimensions: one based on the environment and the
other on labels. In Fig. 4, we illustrate the objectiveLEnvCon.
For each anchor variant subgraph, positive neighborhoods
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Figure 4. Illustration of objective LEnvCon in Inter-Hierarchy Envi-
ronment Augmentation. (a) We pull environment-based neighbor-
hoods N k

pe(z
k
v ) and N k−1

pe (zkv ) toward anchor variant subgraph
embedding zkv . (b) We show a simple illustration of anchor variant
subgraph zk−1

v in the previous hierarchy k − 1. (c) Notations of
the illustration figure.

encompass graphs with the same predicted environmental
labels as the anchor graphs, including neighborhoods from
the previous hierarchy. The objective LLabelCon is computed
similarly to LEnvCon, but the label-based neighborhoods of
anchor subgraphs consistently remain the same. Notably, to
distinguish embeddings between variant and invariant sub-
graphs, we employ two MLP layers with distinct parameters
to embed each subgraph.

9. Data Statistics
DrugOOD datasets. We present the data statistics for
the DrugOOD dataset in Tab. 4. To evaluate the perfor-
mance of our model in realistic scenarios involving distribu-
tion shifts, we have integrated three datasets from the Dru-
gOOD benchmark [20]. This benchmark offers a compre-
hensive out-of-distribution (OOD) evaluation in AI-driven
drug discovery, specifically focusing on predicting drug-
target binding affinity for both protein targets and drug com-
pounds. The molecular data and annotations are precisely
curated from the ChEMBL 29 database [35], capturing var-
ious distribution shifts across various assays, scaffolds, and
molecule sizes. We specifically select datasets with three
different splits, assay, scaffold, and size, from the ligand-
based affinity prediction task. This task involves IC50 and
EC50 measurements and encompasses annotation noise at
the core level.

General datasets. In CMNIST-sp dataset, digits 0-4 are
assigned to y = 0, and digits 5-9 are assigned to y = 1.
Following previous studies, the label y will be flipped with a
probability of 0.25. In addition, green and red colors will be



Algorithm 1: The training procedure.

Data: Dataset Gtrain = {(Gi, yi)}Ntrain
i=1 ,

hierarchical subgraph generation module s,
hierarchical environment inference module f ,
graph invariant learning module F . Number
of hierarchies K, number of training epochs
for hierarchical environment inference
module E1, number of training epochs for the
graph invariant learning E2, Batch size B.

Result: Final estimated model F

1 Initialize the models s, f, F ;
2 for p1 ← 1 to E1 do
3 Sample a batch of data B from Gtrain with batch

size B;
4 for Gj , yj ∈ B do
5 for k ← 1 to K do
6 Obtain environment predictions ekj from

fk; Find environment-based neighbors
N k

pe(Gj) with the same ekj in k and
k − 1-th layer;

7 Find label-based neighbors Npy(Gj)
with the same yj ;

8 Compute loss Lk
hier(s

k, fk;Gj) via Eq.
10;

9 Compute loss LHEI across all K hierarchies;
10 Back propagate and optimize s, f ;

11 Freeze the parameters of module s, f ;
12 for p2 ← 1 to E2 do
13 Sample a batch of data B from Gtrain with batch

size B;
14 for Gj , yj ∈ B do
15 Determine the environment of each sample

(G, y) in Gj by argmaxêf(ê|s(G), y) in
last hierarchy K − 1;

16 Compute loss Linv(F ;Gj , ê) according to
Eq. 11;

17 Backpropagate and optimize F ;

18 Return the final estimated model F ;

assigned to images with labels 0 and 1 on an average prob-
ability of 0.15 for the training data, respectively. In Graph-
SST datasets, the node features are generated using BERT
[22] and the edges are parsed by a Biaffine parser [11]. We
follow previous works [6, 7] and split the datasets according
to the averaged degrees of each graph. In the Graph-SST5
dataset, we partition graphs into the training and test sets
using a sorting approach that arranges them from small to
large degrees. In contrast, in the Twitter dataset, we adopt
an inverse ordering strategy. This means that during train-

ing, the model is exposed to graphs with larger degrees, al-
lowing us to assess its generalization performance on graphs
with smaller degrees during evaluation.

10. Baselines and Experimental Settings
GNN encoder. For a fair comparison, we employ the
same graph neural network (GNN) architecture in all meth-
ods. Consistent with prior studies, we utilize a multi-layer
graph isomorphism network (GIN) [42] with Batch Normal-
ization [18] between layers and jumping knowledge (JK)
residual connections at the last layer. The hidden dimen-
sion of the GNNs is set to 128, and we explore the number
of GNN layers within the range of {3, 4, 5}.

Optimization and model selection. We utilize the Adam
optimizer [23] and perform a grid search for learning rates
in {1e−3, 1e−4, 4e−5, 1e−5}, as well as batch sizes in
{32, 64, 128} across all models and datasets. Early stop-
ping based on validation performance is implemented with
a patience of 20 epochs. A default dropout value of 0.5 is
used for all datasets. The final model is selected based on its
performance on the validation set. All experiments are con-
ducted with five different random seeds (1, 2, 3, 4, 5), and
the results are reported as the mean and standard deviation
from these five runs.

Euclidean OOD methods. Building on the implementa-
tion of Euclidean OOD methods (IRM [2], V-Rex [26], IB-
IRM [1], and EIIL [8]) in the previous study [7], we adopt
the same implementation setup to reproduce the results of
these methods. As environmental information is not pro-
vided, we follow the methodology of previous works [6, 7]
and randomly assign training data to two environments.
The weights for the regularization term are selected from
{1.0, 0.01, 0.001} to calculate the IRM loss. Since the ob-
tained results closely align with those reported in [7], we
directly use the reported results from [7] for comparison.

Graph OOD methods. We reproduce the experiments for
GREA, CIGAv1, CIGAv2, MoleOOD, and GALA using the
provided codes, if available. Although the previous work
GALA [7] implemented these baselines, our reproduced re-
sults differ. We adhere to the author-recommended hyperpa-
rameters for training the baselines, and consequently, some
of the baselines exhibit superior results compared to the re-
ported GALA results. For the remaining baselines, includ-
ing LiSA [45], DisC [10], and GIL [27], we observe that
these models struggle to fit the DrugOOD dataset with the
hyperparameters provided, as indicated in Tab. 6.

Our methods. As previously mentioned, we employ the
same GNN architecture to obtain graph embeddings in our



Table 4. Statistics of the datasets used in experiments. The number of nodes is averaged numbers among all datasets.

DATASETS #TRAINING #VALIDATION #TESTING #LABELS #ENVS #NODES #METRICS

CMINST-SP 40,000 5,000 15,000 2 N/A 56.90 ACC
GRAPH-SST5 6,090 1,186 2,240 5 N/A 19.85 ACC
GRAPH-TWITTER 3,238 694 1,509 3 N/A 21.10 ACC
IC50-ASSAY 34,179 19,028 19,032 2 311 34.58 ROC-AUC
IC50-SCA 21,519 19,041 19,048 2 6,881 39.38 ROC-AUC
IC50-SIZE 36,597 17,660 16,415 2 190 37.99 ROC-AUC
EC50-ASSAY 4,540 2,572 2,490 2 47 39.81 ROC-AUC
EC50-SCA 2,570 2,532 2,533 2 850 56.84 ROC-AUC
EC50-SIZE 4,684 2,313 2,398 2 167 48.40 ROC-AUC

METHODS CMNIST-SP GRAPH-SST5 TWITTER

ERM 21.56±5.38 42.62±2.54 59.34±1.13

GREA 18.64±6.44 43.29±0.85 59.92±1.48
DISC 54.07±15.3 40.67±1.19 57.89±2.02
CIGAV1 23.66±8.65 44.71±1.14 63.66±0.84
CIGAV2 44.91±4.31 45.25±1.27 64.45±1.99
GIL 18.04±4.39 43.30±1.24 61.78±1.66
MOLEOOD 39.55±4.35 40.36±1.85 59.26±1.67
GALA 59.16±3.64 44.88±1.02 62.45±0.62

OURS 46.37±4.33 46.83±0.54 64.51±0.10

Table 5. Test accuracies of various models on CMNIST-SP,
GRAPH-SST5, and TWITTER benchmark datasets. The mean ±
standard deviation of all models is reported as an average of 5 ex-
ecutions of each model. The best performance in each dataset is
highlighted in bolded and the second best methods are underlined.

methods. In stochastic subgraph generation, we explore
threshold values in {0.5, 0.6, 0.8} for different datasets. To
address potential over-smoothing issues in GNNs, we set
the number of GNN layers in the environment inference
stage (first stage) to 1 and search the number of GNN lay-
ers in graph invariant learning (second stage) in {3, 4, 5}.
For hierarchical settings, we search for the optimal num-
ber of hierarchy layers (i.e., K) from {1, 2, 3} for differ-
ent datasets. As shown in Tab. 4, some datasets, such as
CMNIST-sp and Graph-SST, do not provide environmen-
tal information. For general datasets, we set the number of
environment labels in the first hierarchy (i.e., E1) to 100.
For DrugOOD datasets, we set E1 as the provided number,
e.g., E1 of the IC50-SCA dataset is 6881. We search for
the optimal number of environment labels at the last hier-
archy in {2, 5, 10} for different datasets. For intermediate
hierarchies, we set the median as the number of environ-
ment labels, e.g., K = 3 and (E1, E2, E3) = (100, 50, 2).
We iteratively conduct hierarchical environment inference
to obtain more high-level semantic environments. In graph
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Figure 5. Hyperparameter Selection of alpha, beta, #Envs, and #Hierarchies.

variant learning with inferred environments, we select the
weights for the regularization term from {1.0, 0.01, 0.001}
to calculate the IRM loss. In Fig. 5 (a), we conducted ex-
periments for two inter-hierarchy contrastive learning. The
performance of the model shows an upward trend with vary-
ing values of both α and β, demonstrating the effectiveness
of incorporating LEnvCon and LLabelCon in our model. In
Fig. 5 (b), the hierarchical inference of environments shows
superiority over the flat inference (= existing methods) and
the selection of the starting number of environments can
have different performances.

11. Additional Experiments

We report results on general datasets (CMNIST-SP, Graph-
SST5, and Twitter) as shown in Tab. 6. In particular,
our methods consistently outperform baseline approaches
on Graph-SST datasets. We acknowledge that our meth-
ods did not yield successful results on the CMNIST-SP
dataset. We analyze the potential reasons as follows: (1)
Our model focuses on learning variant substructures hier-
archically, which can help infer more meaningful seman-
tic environments for graph invariant learning. (2) While
CMNIST-SP contains shifts in node attributes, Graph-SST
encounters shifts in node degree (structure). Our method
demonstrates robustness in graphs featuring more complex
distribution shifts, particularly those influenced by struc-
tural variations, as indicated by results on DrugOOD. Fur-
thermore, in Tab. 7, our method outperforms baseline per-
formance when evaluated on three molecular property pre-
diction datasets from the Open Graph Benchmark under fair



METHODS EC50-ASSAY EC50-SCA EC50-SIZE
#ENV 47 850 167

LISA [45] 68.10±2.60 64.60±1.70 61.20±1.90
DISC [10] 65.40±5.34 54.97±3.86 56.97±2.56
GIL [27] 72.13±4.70 63.05±1.04 62.08±1.06

OURS 80.82±0.21 69.73±0.21 66.87±0.38

Table 6. Test ROC-AUC of rest models on DrugOOD benchmark
datasets. The mean ± standard deviation of all models is reported
as an average of 5 executions of each model. The best methods are
highlighted in bold.

METHODS MOLBACE MOLBBBP MOLHIV

GIN 77.83±3.15 66.93±2.31 76.58±1.02

GIN+MOLEOOD 81.09±2.03 69.84±1.84 78.31±0.24

OURS 82.26±0.88 71.30±0.47 79.65±0.14

Table 7. Molecular property prediction from Open Graph Bench-
mark (OGB).

DATASETS DIR GSAT GIL OURS

EC50-SCA 64.45±1.69 66.02±1.13 63.05±1.04 69.73±0.21
MOLHIV 77.05±0.57 76.47±1.53 79.08±0.54 79.65±0.14

Table 8. More baseline comparisons in EC50-SCA (DrugOOD)
and MOLHIV (OGB).

conditions. As shown in Tab. 8, our model outperforms
the additional three baselines on EC50-SCA and MOLHIV
datasets.

12. Qualitative Analysis of Hierarchical Se-
mantic Environments.

To evaluate the practical efficacy of our proposed hierar-
chical environmental inference model in capturing complex
environmental patterns, we utilize a visualization-based ap-
proach to compare the assignment outcomes between a flat
environment model (Fig. 7) and our model (Fig. 8) for the
same set of molecules. We specifically focus on molecules
labeled 0 from the IC50-SCA dataset, where our model
exhibits accurate predictions while other flat environment-
inference models (such as the Infer#2 model) fail to pre-
dict accurately. We then visualize the allocation of these
molecules in each environment, with particular emphasis on
highlighting scaffold information.

In the Infer#2 model, the necessity of directly predict-
ing assignments to two environments in molecules with
intricate scaffold structures may result in overfitting com-
plex structural features. In contrast, our model addresses
the challenge of overfitting to molecular structural features.
Through the combined learning of hierarchical environmen-
tal inference and graph invariant learning, we effectively ex-

(a) (b)

(c) (d)

Figure 6. (a) Grey: Scaffold. (b) Red: Functional group
(Chlorobenzene), and structural alert COC(=O)C from PubChem.
(c, d) Blue: Learned variant subgraphs from the first and second
hierarchies (the rest of the graph is considered learned invariant).

tract spurious features, facilitating higher-level assignments
of molecules to distinct environments.

In Fig. 7, the Infer#2 model may allocate seemingly sim-
ilar molecules to the same environment, but environments
inferred from our model have a higher inter-environment
diversification score, which is described in the discussion
section (Sec.5.4). This indicates that the Infer#2 model fails
to capture spurious features, instead blending causal fea-
tures and resulting in inaccurate predictions. In summary,
our hierarchical environmental assignment model generates
more sophisticated semantic environments by learning hier-
archical spurious features through graph invariant learning.
This approach mitigates the overfitting challenges observed
in models with flat environment inference, leading to a more
accurate delineation of meaningful environments.

12.1. Specific Case Studies on Learned Invariant
Graphs.

In the DrugOOD-SCA dataset, consisting of 6,881 diverse
scaffolds (environments), we computed Morgan-fingerprint
Tanimoto similarity for all pairwise scaffolds. The results
show a long-tailed distribution with a mean of 0.13 and a
standard deviation of 0.04. This reveals the importance of
learning the hierarchy of complex environments, given the
presence of both similar and dissimilar scaffolds. We per-
formed a specific case study using an active molecule from
DrugOOD. Fig. 6 shows our model capturing scaffold-like
variants hierarchically while preserving invariant substruc-
tures. The final remaining invariant subgraphs are shown to
be aligned with the functional group and structural alert.

12.2. Theoretical Analysis of Our Method.

Our method enhances out-of-distribution (OOD) perfor-
mance by hierarchically stacking intra-hierarchy and inter-
hierarchy losses. Specifically, grounded in the theorem of
Structrual Causal Models [2], the intra-hierarchy loss LED

satisfies the condition H(Y |Xv) − H(Y |Xv, Elearn) > 0
from EDNIL [17], thereby maximizing the diversity of
inferred environments at each hierarchy. Furthermore,
the LEnvCon and LLabelCon in the inter-hierarchy adjust the
boundary of the embedding space for variant and invariant
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Figure 7. Visualizing molecules with incorrect predictions in their environments assigned by Infer#2 model in IC50-SCA dataset. The
highlighted part with red color represents the scaffold information of each molecule.
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(a) True label: 0; Predicted label: 0; Env: 0
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(b) True label: 0; Predicted label: 0; Env: 1

Figure 8. Visualizing molecules with incorrect predictions in their environments assigned by our model in IC50-SCA dataset. The high-
lighted part with red color represents the scaffold information of each molecule.

subgraphs, resulting in both theoretically and empirically
diverse and reliable environments for graph invariant learn-
ing (Fig. 5).
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