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This supplementary material offers further insights into
our work. In Sec. A we provide results on the official KITTI
benchmark, and standard metric evaluation on KITTI and
NYU validation set. Moreover, Sec. B includes additional
ablations, namely with VIT backbone and a comparison of
different pseudo-spherical representations. In addition, dif-
ferences between convolutional and ViT-based backbones re-
garding generalization are discussed. In Sec. C, we describe
the datasets used for training and testing and how we pro-
pose to amend Diode [33] artifacts at boundaries present in
ground-truth depth. We analyze the complexity of UniDepth
and compare it with other methods in Sec. D. Furthermore,
we describe in Sec. E the network architecture in more de-
tail, necessarily Sec. E overlaps with Sec. 3. Eventually, ad-
ditional visualizations are provided in Sec. F.

A. Results

KITTI benchmark [10]. Table 6 clearly shows the com-
pelling performance of UniDepth on the official KITTI pri-
vate test set. Results of the latest published methods are re-
ported. The table is fetched from the official KITTI leader-
board for depth prediction. In particular, UniDepth ranks first
in the KITTI benchmark at the time of submission among
all methods, published and not.

Table 6. Results on official KITTI [10] Benchmark. Comparison
of performance of methods trained on KITTI and tested on the
official KITTI private test set.

Method SIlog Sq.Rel A.Rel iRMS
Lower is better

MG [20] 9.93 1.68 % 7.99 % 10.63
URCDC-Depth [28] 10.03 1.74 % 8.24 % 10.71
iDisc [25] 9.89 1.77 % 8.11 % 10.73
VA-DepthNet [21] 9.84 1.66 % 7.96 % 10.44
IEBins [30] 9.63 1.60 % 7.82 % 10.68
NDDepth [29] 9.62 1.59 % 7.75 % 10.62

UniDepth 8.13 1.09% 6.54 % 8.24

Table 7. Comparison on KITTI Eigen-split test set. The first five
methods are trained on KITTI and tested on it. The last six meth-
ods are tested in a zero-shot setting. UniDepth-{C, V}: UniDepth-
{ConvNext [23], ViT [8]}. (†): MiDaS [26] pre-trained. (‡): pre-
dicted intrinsics are utilized for conditioning and backprojecting.

Method δ1 δ2 δ3 FA A.Rel RMS RMSlog CD SIlog
Higher is better Lower is better

BTS [19] 96.2 99.4 99.8 82.0 5.63 2.43 0.089 0.42 8.18
AdaBins [3] 96.3 99.5 99.8 81.5 5.85 2.38 0.089 0.429 8.10
NeWCRF [40] 97.5 99.7 99.9 82.7 5.20 2.07 0.078 0.388 7.00
iDisc [25] 97.5 99.7 99.9 83.1 5.09 2.07 0.077 0.380 7.11
ZoeDepth [4] 96.5 99.1 99.4 82.1 5.76 2.39 0.089 0.431 7.47
Metric3D [38] 97.5 99.5 99.8 82.9 5.33 2.26 0.081 0.392 7.28

Ours-C 97.8 99.7 99.9 83.9 4.69 2.00 0.073 0.371 6.72
Ours-V 98.6 99.8 99.9 85.0 4.21 1.75 0.064 0.338 5.84

Ours-C ‡ 97.8 99.7 99.9 80.8 4.77 2.00 0.073 0.427 6.72
Ours-V ‡ 98.6 99.8 99.9 82.7 4.21 1.75 0.064 0.381 5.84

Table 8. Comparison on NYU validation set. The first five meth-
ods are trained on NYU and tested on it. The last six methods
are tested in a zero-shot setting. UniDepth-{C, V}: UniDepth-
{ConvNext [23], ViT [8]}. (†): MiDaS [26] pre-trained. (‡): pre-
dicted intrinsics are utilized for conditioning and backprojecting.

Method δ1 δ2 δ3 FA A.Rel RMS Log10 CD SIlog
Higher is better Lower is better

BTS [19] 88.5 97.8 99.4 74.0 10.9 0.391 0.046 0.160 11.5
AdaBins [3] 90.1 98.3 99.6 74.7 10.3 0.365 0.044 0.156 10.6
NeWCRF [40] 92.1 99.1 99.8 75.8 9.56 0.333 0.040 0.147 9.16
iDisc [25] 93.8 99.2 99.8 78.2 8.61 0.313 0.037 0.133 8.85
ZoeDepth [4] 95.2 99.5 99.8 80.1 7.70 0.278 0.033 0.125 7.19
Metric3D [38] 92.6 97.9 99.1 77.8 9.38 0.337 0.038 0.146 9.13

Ours-C 97.2 99.6 99.9 84.4 6.22 0.231 0.026 0.101 6.39
Ours-V 98.4 99.7 99.9 85.9 5.78 0.201 0.024 0.092 5.27

Ours-C‡ 97.2 99.6 99.9 84.1 6.33 0.232 0.027 0.103 6.40
Ours-V‡ 98.3 99.7 99.9 85.5 6.04 0.205 0.025 0.094 5.28

KITTI Eigen-split and NYUv2-Depth. For the sake of
completeness, we report the “standard” metrics results in Ta-
ble 7 and Table 8 on KITTI Eigen-split and NYU validation
set, respectively. It is worth noting that the typical metrics δ2
and, especially, δ3 are saturated, thus not informative. There-
fore, we advocate our choice of not reporting them in the
main paper and prefer to report δ0.5. Moreover, we suggest
in future works the use of the area under the curve of the δ
metrics as a more informative and comprehensive metric, in-
stead of the values at fixed thresholds, i.e. {1.25i}3i=1.
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B. Ablations

B.1. Ablations with ViT backbone

Ablations with ViT backbone are provided in Table 9. The
trend in Table 9 is consistent with the one outlined for
the convolutional backbone. More specifically, the ab-
lated components contribute similarly between ViT-L [8]
and ConvNext-L [23] backbones. However, utilizing a ViT
backbone shows a larger variability for out-of-domain re-
sults, also showing a stronger effect of the usage of pseudo-
spherical representation both for the Baseline and Full. The
increased susceptibility of the scene’s depth scale to domain
shift is also related to the backbone comparison in Table 1.
In particular, zero-shot results suggest that the convolutional
architecture exhibits superior resilience to scale-related do-
main shifts, although showing relative disadvantage in han-
dling appearance-related domain shifts. SIlog consistently
favors ViT over convolutional methods, emphasizing the lat-
ter’s diminished performance in appearance domain shifts.
However, scale-dependent metrics do not consistently favor
ViT, indicating that the constrained receptive field of convo-
lutional methods yields higher robustness to domain shifts
associated with scale.

B.2. Alternative pseudo-spherical representation

Sec. 3 focuses on describing the pseudo-spherical represen-
tation chosen to disentangle the two sub-tasks, namely cali-
bration and depth estimation, and ablations studies confirm
the effectiveness of disentangling the sub-tasks. In particu-
lar, UniDepth exploits an angular pseudo-spherical represen-
tation, namely based on azimuth, elevation angle, and log-
depth, i.e. (θ, ϕ, zlog). Nevertheless, an alternative solution
to disentangle the two different sub-tasks, namely calibra-
tion and depth estimation, is to exploit the bearing vector and
log-depth. More specifically, a bearing vector corresponds to
the unit-length ray represented by (rx, ry , rz) ∈ S2, with S2
corresponding to the unit-sphere manifold. The bearing vec-
tors are obtained as the unprojection of image coordinates
based on the (pinhole) camera model. With this design, the
output is represented by the tuple (rx, ry, rz , zlog) and the
loss LλMSE is applied seamlessly as depicted in Sec. 3, but
with λrx = λry = λrz = 1 and λz = 0.15.

However, the disentanglement in rays and log-depth can
be viewed as an alternative pseudo-spherical representa-
tion, in fact, rays and angles share a direct relationship θ =
arctan( rxrz ) and ϕ = arccos(ry). Table 10 explores the ef-
fectiveness of this alternative representation and compares
to the one presented in Sec. 3. The ablation study reported
in Table 10 highlights how the difference between the two
representations is marginal and, in most cases, within the un-
certainty range, thus proving their similarity. The main dif-
ference lies in the output space dimensionality. In principle,
the bearing vectors would span the entire R3 space. How-

ever, the space is constrained to the unit-sphere manifold by
L2 normalization.

Furthermore, we ablate our camera prompting with re-
spect to CAMConvs [9] in Table 11

Algorithm 1 GT depth boundaries refining.

procedure BOUNDARYREFINE(Zlog)
L = Laplacian(Zlog, k = 5)
M = I[L10% ≤ L ≤ L90%] ▷ Compute Laplacian

and threshold at 10-90 percentile
M = (M⊖ eye3)⊕ eye3 ▷ Opening with size 3
M = MedianBlur(M, k = 3)
Z = exp(Zlog) ·M
return Z

C. Datasets
C.1. Datasets details

Details of training and testing datasets are presented in Ta-
ble 12. The training datasets are processed in a way that the
interval between two consecutive RGB and GT depth frames
is not smaller than one second. We do not apply any post-
processing apart from the aforementioned subsampling. The
total amount of training samples accounts for 3’743’000 sam-
ples. SUN-RGBD [31] validation set involves also NYU [24]
test set. Therefore, we removed the samples corresponding
to NYU test set to avoid any overlap between test sets. As
per standard practice, KITTI Eigen-split corresponds to the
corrected and accumulated GT depth maps with 45 images
with inaccurate GT discarded from the original 697 images.

C.2. Diode Indoor ground-truth correction

Diode [33] ground-truth depth is not perfectly accurate on
boundaries, in particular, a simple inspection shows how
depth in boundaries presents low values, but greater than
zero. These artifacts present in the GT affect the valida-
tion pipeline and results. Therefore, we design a simple
image processing algorithm, outlined in Algorithm 1, that,
first, detects the aforementioned boundary artifacts and, sec-
ond, masks the depth in the corresponding neighborhoods.
Thanks to masking those boundaries, the corresponding re-
gions are ignored during validation.

D. Model Complexity
Table 13 displays the parameters and inference complexity
of UniDepth and other SotA methods. UniDepth with ViT-L
backbone is comparable to ZoeDepth in terms of efficiency
and model parameters; however UniDepth surpasses it in
terms of performance as stated in Sec. 4. Metric3D displays
an improved efficiency due to the fully convolutional and
relatively low dimensionality designed in the decoder. It is
worth highlighting how ZeroDepth presents a low efficiency



Table 9. Ablations of UniDepth. In-Domain corresponds to the union of the training domain’s validation sets, while Out-of-Domain
involves the union of zero-shot testing sets. Oracle is the model with provided GT cameras at training and test time. Baseline directly
predicts 3D points in Cartesian space, Baseline++ in pseudo-spherical. Full represents the final UniDepth. All models have the same depth
and camera module architecture, if any. ARelC is the mean of elementwise absolute relative error for camera intrinsics. (†): GT camera
intrinsics utilized for backprojection. The backbone used is ViT-L [8]. Medians and median average deviations over three runs are reported.

Ablation In-Domain Out-of-Domain
δ1 ↑ SIlog ↓ FA ↑ ARelC ↓ δ1 ↑ SIlog ↓ FA ↑ ARelC ↓

1 Oracle 91.46±0.09 12.12±0.02 68.35±0.14 n/a 72.17±0.44 13.07±0.01 59.84±0.18 n/a
2 Full 91.43±0.05 12.06±0.06 65.44±0.84 2.19±0.14 64.45±0.52 13.0±0.02 52.46±0.29 12.31±0.61

3 – Camera 89.33±0.04 12.54±0.04 66.02±0.27 n/a 60.67±0.22 13.4±0.07 52.43±0.08 n/a
4 – Lcon 90.27±0.13 12.21±0.01 63.28±0.66 1.92±0.31 61.98±0.41 13.24±0.04 50.91±0.16 13.11±0.36

5 – Spherical 32.92±0.18 18.11±0.08 33.62±0.07 21.64±0.2 48.43±1.27 18.53±0.35 42.85±1.18 17.16±0.79

6 – Dense 90.16±0.15 12.23±0.01 64.19±0.03 1.83±0.18 62.44±0.19 13.36±0.04 49.34±0.28 13.68±0.61

7 – Detach 89.93±0.02 12.58±0.04 66.30±0.35 0.94±0.03 51.77±0.09 13.45±0.02 49.91±0.01 14.87±0.22

8 Baseline 21.26±0.23 23.43±0.45 29.19±0.09 n/a 34.15±0.74 20.39±0.42 40.14±0.52 n/a
9 Baseline++ 88.84±0.11 12.93±0.11 42.72±0.10 n/a 59.31±0.58 14.04±0.03 44.12±0.10 n/a

Table 10. Ablations of specific pseudo-spherical representation. In-Domain corresponds to the union of the training domain’s validation
sets, while Out-of-Domain involves the union of zero-shot testing sets. All models have the same depth and camera module architecture.
ARelC is the mean of elementwise absolute relative error for camera intrinsics. Medians and median average deviations over three runs are
reported.

Ablation Backbone In-Domain Out-of-Domain
δ1 ↑ SIlog ↓ FA ↑ ARelC ↓ δ1 ↑ SIlog ↓ FA ↑ ARelC ↓

UniDepth ViT-L [8] 91.43±0.05 12.06±0.06 65.44±0.84 2.19±0.14 64.45±0.52 13.00±0.02 52.46±0.29 12.31±0.61

UniDepth rays ViT-L [8] 90.93±0.02 12.19±0.06 64.70±0.05 2.44±0.11 65.50±0.81 13.03±0.01 53.12±0.02 11.82±0.99

UniDepth ConvNext-L [23] 88.89±0.10 13.13±0.01 63.52±0.08 2.05±0.01 57.06±1.48 14.83±0.04 49.71±0.55 13.54±0.85

UniDepth rays ConvNext-L [23] 88.55±0.31 13.24±0.10 62.58±1.11 2.74±0.13 55.10±0.39 14.91±0.01 46.38±0.61 15.00±0.36

Table 11. Ablate UniDepth with CAMConvs. Full is complete
UniDepth, as row 2 in Tab. 5. w/ CAMConvs represents UniDepth
with CAMConvs [14] conditioning instead of our prompting.

Ablation In-Domain Out-of-Domain
δ1 ↑ SIlog ↓ FA ↑ ARelC ↓ δ1 ↑ SIlog ↓ FA ↑ ARelC ↓

w/ CAMConvs 87.81 13.49 60.90 2.55 54.65 15.37 43.09 16.11
Full 88.89 13.13 63.52 2.05 57.06 14.83 49.71 13.54

although based on ResNet-18, we argue that this is due to the
expensive full-resolution cross-attention in the decoder. The
last two rows in Table 13 analyze separately the complexity
of the single Camera and Depth Module. The Camera Mod-
ule is a lightweight component accounting for 13.4M pa-
rameters. On the other hand, the Depth Module amounts to
more than half of the total latency, despite the limited mem-
ory consumption. The Depth Module’s high latency is due
to the several (6) self-attention layers in the decoder.

E. Network Architecture

Encoder. We show the effectiveness of our method with
different encoders, both convolutional and transformer-based
ones, e.g., ConvNext [23] and ViT [8]. However, all of them
follow the same structure: the feature maps are extracted at
each layer and the features map corresponding to a “scale” is
obtained as the pixel-wise average. For ConvNext, we obtain
the class tokens as the average pooled feature maps. All
backbones utilized are originally designed for classification,

Table 12. Datasets List. List of the training and testing datasets:
number of images, scene type, and method of acquisition are re-
ported. SfM: Structure-from-Motion. MVS: Multi-View Stereo.

Dataset Images Scene Acquisition

Tr
ai

ni
ng

Se
t

A2D2 [11] 78k Outdoor LiDAR
Argoverse2 [34] 403k Outdoor LiDAR
BDD100k [39] 270k Outdoor SfM
CityScapes [6] 24k Outdoor MVS
DrivingStereo [37] 63k Outdoor MVS
Mapillary PSD [1] 742k Outdoor SfM
ScanNet [7] 83k Indoor RGB-D
Taskonomy [41] 1940k Indoor RGB-D
Waymo [32] 223k Outdoor LiDAR

Te
st

in
g

Se
t

DDAD [12] 1002 Outdoor LiDAR
Diode [33] 325 Indoor LiDAR
ETH3D [27] 454 Outdoor RGB-D
HAMMER [17] 496 Indoor Mix
IBims-1 [18] 100 Indoor RGB-D
KITTI [10] 652 Outdoor LiDAR
NuScenes [5] 3k Outdoor LiDAR
NYU [24] 654 Indoor RGB-D
SUN-RGBD [31] 4.4k Indoor RGB-D
VOID [35] 800 Indoor RGB-D

thus we remove the last 3 layers, i.e., the pooling layer, fully
connected layer, and softmax layer. The feature maps are
flattened, then LayerNorm [2] (LN) and a linear layer are
applied. The linear layer projects the features to a common



Table 13. Parameters and efficiency comparison. Comparison
of performance of methods based on latency, throughput, and num-
ber of trainable parameters. Tested on RTX3090 GPU, 32-bit preci-
sion float, and input image with size (480, 640). The last two rows
correspond to the Camera and Depth Moudel evaluated indepen-
dently. R18: ResNet-18 [14], D161: DenseNet-161 [16], EN-B5:
EfficientNet-B5-AP [36], CNXT-L: ConvNext-L [23].

Method Backbone Latency (ms) Throughput (FPS) Parameters (M)

BTS [19] D161 28.5 35.1 47.0
Adains [3] EN-B5 33.2 30.1 78.3
NewCRF [40] SWin-L [22] 53.1 18.8 280.0
iDisc [25] SWin-L [22] 81.1 12.3 209.2
ZoeDepth [4] BEiT-L 144.8 6.91 345.9
ZeroDepth [13] R18 955.6 1.05 232.6
Metric3D [38] CNXT-L 40.3 24.8 203.2
UniDepth CNXT-L 86.6 11.5 238.9
UniDepth ViT-L [8] 146.4 6.83 347.0

Camera Module - 5.1 - 13.4
Depth Module - 49.2 - 26.6

channel dimension of 512. The projected feature maps are
interpolated to a common shape, namely (h,w) = (H16 ,

W
16 ),

with H , W as input height and width, respectively. Two
independent projections are utilized for the features maps, i.e.
F ∈ Rh×w×C×B with B corresponding to the four scales,
and C set to 512 as mentioned above, and the class tokens
∈ RC×B , the latter fed to the Camera Module only.
Camera Module. The camera parameters are initialized
with the four class tokens extracted from the Encoder. The
flattened and stacked feature maps from the encoder are de-
tached and used as keys and values in one cross-attention
layer, where the queries correspond to the four camera pa-
rameters. The output is processed by a MultiLayer Per-
ceptron (MLP) with one hidden layer with dimension of
2048 and non-linear activation Gaussian Error Linear Unit
(GELU) [15]. The cross-attention and the MLP present a
residual connection. The four tokens are further processed
with two additional self-attention layers, projected to dimen-
sion one and then exponentiated. The camera parameters
are obtained as fx = ∆fxW

2 , fy =
∆fyH

2 , cx = ∆cxW
2 ,

cy =
∆cyH

2 . The dense camera representation C is obtained
by backprojecting with the predicted camera parameters:
(rx, ry, rz) = K−1[u,v,1]T and calculating the azimuth
and elevation angles, θ and ϕ, as in Sec. B. The angular rep-
resentation is embedded through the Laplace Spherical Har-
monics Embedding (SHE) leading to 81 channels, resulting
in E ∈ Rh×w×81.
Depth Module. The depth latents are initialized as the
average of the features F along the B dimension. Then, the
latents are conditioned on the original feature tensor F via
one cross-attention layer where two projections of F account
for keys and values and L as queries. In addition, one MLP is
applied, seamlessly as in the Camera Module. Furthermore,
the depth features are conditioned on the camera prompts
E with one additional cross-attention layer, where keys and
values are two projections of camera embeddings E, and one
MLP as above. The features are decoded in three consecutive
stages. The first stage applies three self-attention layers with

E as positional encoding. The features are then processed
with one ConvNext [23] layer, upsampled by a factor of two,
and the channels are halved. The second and third stages are
similar, although the second stage presents two self-attention
layers and the third only one. In the second and third stages,
MLP’s hidden channel dimension is sequentially halved,
too, from the initial aforementioned value of 2048. Each
stage’s output is projected to a dimension one. Therefore,
the three output maps are interpolated to a common shape,
i.e. (H2 , W

2 ), and pixel-wise averaged. The final log-depth
output Zlog is obtained by upsampling the obtained tensor
to the input shape (H , W ). The final depth is element-wise
exponentiation of Zlog.

F. Visualization
We provide here twenty more qualitative comparisons, two
for each zero-shot test set: KITTI, NYU, Diode, ETH3D in
Fig. 5, DDAD, NuScenes, SUN-RGBD, IBims-1 in Fig. 6,
and Fig. 7 displays VOID and HAMMER. The error maps
are shown after applying median-based rescaling. The rescal-
ing was deemed necessary to avoid some of the error maps
being completely red and not informative. Due to sparsity,
DDAD and Nuscenes GT and error maps are dilated by a
factor of 5, leading to visible GT depth and error maps.
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Figure 5. Zero-shot qualitative results. Each pair of consecutive rows corresponds to one test sample. Each odd row shows the input RGB
image and the absolute relative error map color-coded with coolwarm colormap. Each even row shows GT depth and the predicted depth.
The last column represents the specific colormap ranges for depth and error. (†): KITTI and NYU in the training set.
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RGB & GT ZoeDepth [4] ZeroDepth [13] Metric3D† [38] UniDepth Meters | A.Rel

Figure 6. Zero-shot qualitative results. Each pair of consecutive rows corresponds to one test sample. Each odd row shows the input RGB
image and the absolute relative error map color-coded with coolwarm colormap. Each even row shows GT depth and the predicted depth.
The last column represents the specific colormap ranges for depth and error. (†): DDAD in the training set.
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RGB & GT ZoeDepth [4] ZeroDepth [13] Metric3D [38] UniDepth Meters | A.Rel

Figure 7. Zero-shot qualitative results. Each pair of consecutive rows corresponds to one test sample. Each odd row shows the input RGB
image and the absolute relative error map color-coded with coolwarm colormap. Each even row shows GT depth and the predicted depth.
The last column represents the specific colormap ranges for depth and error.
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