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1. Datasets details
The following datasets have been used for evaluation in the
paper:

MSRVTT-QA [13] is a popular Video QA dataset of
about 10K video clips and 243K question-answer pairs. It
is derived from the MSRVTT dataet by automatic question-
answer pairs and contains a certain level of noise. Videos
are about 14 seconds in length, on average.

ActivityNet-QA [14] is a commonly used benchmark for
understanding of longer videos. It contains 5,800 videos
and 58,000 question-answer pairs. It has much longer
videos which entail longer and more complex scenes. The
video length is about 160 seconds per video on average.

NExT-QA [12] dataset is also addressing long video un-
derstanding. It contains 5,440 videos and about 52K manu-
ally annotated question-answer pairs. The average length of
the videos is 44 seconds. Apart from questions related to de-
scriptions and in the video, NExT-QA focuses on questions
related to events and sequence of events within the video,
e.g., causal (‘Why’ and ‘How’ questions), and temporal -
questions related to order of events, or related to concurrent
activities and others.

VGG-Sound [3] is a large-scale audio-video dataset, fea-
turing over 200,000 videos accompanied by audio sounds.
The data is formulated as classification tasks with 300 audio
classes.

Epic-Sound [6] is an audio-video dataset based on the
Epic-Kitchens dataset. It has 78.4k examples and 44 target
classes.

Kinetics-Sound [2] is a dataset derived from the popu-
lar Kinetics-400 video recognition dataset. Kinetics-Sound
includes audio inputs sampled together with the video and
has 36 classes.

All the abovementioned audio-video datasets used in the
paper, have been formulated as datasets for classification

tasks. Here we use the class outputs (which are typically
short phrases describing an activity, instrument or type of
sound e.g ’Knocking on a door’) and treat them as open-
ended text generation tasks and thus they are now audio-
video-text datasets.

2. Additional ablations
Tab. 1 shows additional ablations. This is conducted by a
model trained on only 1/2 of the epochs to save compute.
All experiments within each ablation table are ran for the
same steps.

Autoregressive ablations, equalizing total dimen-
sions. In Tab. 1a we evaluate the autoregressive model vs
non-autoregressive one, by equalizing the total number of
Combiner dimensions. More specifically, if the full video
is ran on T chunks, each of Combiner dimension K, then
we compare to a non-autoregressive model of total T ∗ K
dimensions, in order to be maximally fair for both models.
We see that, when equalizing the total dimensions, an au-
toregressive model is also more advantageous. More frames
are beneficial, as expected, also confirming findings in the
paper. We further see that allocating more dimensions, all
other things being equal, is slightly beneficial.

Loss ablations: We compare using different loss
weights when training (Tab. 1b). We see that increasing
the weight for the text generative loss is overall beneficial.
This is done only during fine-tuning. This ablation informed
out decision to finetune the larger model using a larger un-
aligned text loss weight of 10.0.

3. Combiner Visualizations.
In Figure Fig. 1, we visualize the different combiners we
explored. The Transformer combiner, CLS combiner and
Perceiver combiner are all based on transformers taking in-
put of all the video + audio features and reducing them to

1



Model Frames Chunks Dim Total Dim Acc.

Baseline 32 1 256 256 40.4
Baseline 128 1 256 256 44.8
Autoreg. 128 16 16 256 45.5

(a) Autoregressive model.
Model Causal Video Text Acc.

Main 1.0 1.0 1.0 45.0
Text Low 1.0 1.0 0.1 44.6
Text High 1.0 1.0 10.0 45.4

(b) Loss weights.

Table 1. Additional ablation studies.

m combined features. We found our main combiner to out-
perform the other two in Table 5 of the main paper. We note
that the Perceiver combiner is an adaptation of our combiner
by applying Perceiver resampling [7]. The TTM combiner
is conceptually different: rather than taking all the previous
features as input, it takes only the current timestep features
as input and uses a memory mechanism with read and write
operations to update it. It then uses a MLP to produce the m
combined output features. This reduces memory and com-
pute use and sometimes reduces accuracy.

4. Additional Model and Implementation de-
tails

Model Details. The autoregressive text model con-
tains about 1.3B parameters, 400M are for cross-attention
weights and 400M for the vocab embeddings and follow-
ing specifications: layers=18, model dims=1536, hidden
dims=12288, heads=12, and head dims=128. About 100M
parameters are for the additional weights associated with
audio. The remaining parameters are for the video in-
put processor, combiner, causal latent model and video re-
construction model (a bit over 1.5B parameters in total).
The combiner, causal latent model and video reconstruction
model are transformers with 128M parameters and the fol-
lowing specifications: layers=8, model dims=1024, hidden
dims=4096, heads=16, and head dims=64. The video chunk
processor has roughly 630M parameters, following ViT-
Huge. The convolutional tubes have 1.5M parameters and
the transformer has 630M parameters and following specifi-
cations: layers=32, model dims=1280, hidden dims=5120,
heads=16, and head dims=80. The total parameter size is
3B parameters.

The smaller model used for ablations keeps the same
combiner, causal latent model, and video reconstruction
model as the main model. However the autoregressive text
model is reduced to 128M parameters with the same settings
as the combiner, and has 20M cross-attention weights and
260M parameters for the vocab embedding. The audio pa-

rameters are held roughly the same. The video input proces-
sor is reduced to ViT-Large which has 300M parameters and
the following specifications: layers=24, model dims=1024,
hidden dims=4096, heads=16, and head dims=80. The total
parameter size is 1.15B parameters.

The TTM Combiner, as mentioned is implemented by a
TokenLearner [11] function and a transformer. The output
dimension K = 32 is the same as the output dimension
for the standard Transformer Combiner. The output dimen-
sions for the ‘Read’ and ‘Write’ functions are 512 and 256,
respectfully. These two parameters can be controlled inde-
pendently to allow more or less capacity to the TTM Com-
biner. The transformer used within the ‘Process’ function is
of 2 layers, 128 hidden dimension and 12 heads. These are
fixed throughout the paper.

Model Pretraining. The pretraining data is the Video-
Text Pairs (VTP) dataset which is collected from noisy
video-text pairs from the web [1]. The main pretraining
is done for the autoregressive, combiner, and the learning
components processing the low-level video features (e.g.,
video tubes convolutions). The text backbone is frozen dur-
ing pretraining while the other components including the
cross attention weights are unfrozen. The model’s image
and text backbones and cross attention layers are initial-
ized from a contrastively image-text pretrained MaMMUT
model [9]. More specifically, MaMMUT is trained jointly
with contrastive and text generative objectives, where the
latter is not of significant importance, and contrastive-only
training is also possible. Pre-training is done on the Align
dataset [8]. The audio backbone is also reusing the same
pre-trained image backbone. During pretraining, the com-
biner model, causal latent reconstruction model and video
reconstruction model and video tubes are all randomly ini-
tialized. All losses are given equal weight during pretrain-
ing. For pretraining, we used a learning rate of 1 × 10−5,
batch size of 32, image resolution of 224×224, 128 frames.

Fine-tuning. During finetuning all parameters are un-
frozen. In addition the unaligned text loss is given extra
weight and increased 10-fold to better align the training loss



with the final evaluation, since the latent space and video
reconstruction are not evaluated. The model is trained for
10 epochs for the MSRVTT-QA dataset and for 80 epochs
on ActivityNet-QA and 20 epochs on NExT-QA. For these
datasets, we finetune with a learning rate of 5×10−6, weight
decay of 0.01, image resolution of 448 × 448, batch size
of 32. We use 128 frames for the main experiments, ex-
cept for the long video benchmarks where we also report
performance with 512. Sampling more frames from the
other benchmarks is not porductive as they contain rela-
tively short videos. We used dropout of 0.1, label smoothing
of 0.2

Video-Audio Implementation Details. Since the model
is pretrained on VTP data, where most videos lack au-
dio, we add a further audio pretraining step here. We use
AudioSet-2M [4] and train the model to output the text of
the class names. In this step, we freeze the weights of the
model, other than the audio weights, allowing the model
to learn to handle the spectrogram inputs. During fine-
tuning on the eval datasets, we fully train the model. Dur-
ing finetuning, we also use Mixup [15], specaugment [10],
dropout and label smoothing, following the settings of pre-
vious works (e.g., [5]). We use a learning rate of 1× 10−5,
with the Adam optimizer (default settings), weight decay of
0.0001, cosine learning rate decay. We use an image reso-
lution of 448× 448, batch size of 32, and 128 frames.

Ablation experiments details. The ablation experi-
ments in Tab. 5a, 5b, 5c, 5d of the main paper are conducted
with our small model. The Baseline in Tab. 5a of the main
paper uses partitioning, as the rest of the approaches tested
in the table, and concatenation of the features to be maxi-
mally comparable to others.

The baselines in Tab. 1a use a single time chunk which
turn off aligned autoregressive modeling. The different
chunks and dimensions explore the relationship between the
number of frames, and output size of the combiner (dim).
None of the single time chunk settings achieve the same
performance as including a an autoregressive representation
even at the same total dimensionality.
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