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Supplementary Material

A. Overview
The supplementary material is organized into the following sections:
• Section B: Inference speed, quality, and editability
• Section C: Codebook reset
• Section D: Influence of word embedding via cross attention
• Section E: Confidence-based masking
• Section F: Inference speed relative to motion length
• Section G: Impact of mask scheduling functions
• Section H: Impact of token sampling strategies
• Section I: Qualitative results including two new motion editing tasks: motion extrapolation/outpainting, motion completion
• Section J: Limitations

B. Inference speed, quality, and editability
To summarize the advantages of our method in three aspects—speed, quality, and editability—we compare AITS, R-
Precision, FID, and Editability for MDM [35], MotionDiffuse [44], MLD [4], T2M-GPT [43], AttT2M [47] in Table 7.
Only MDM [35], a diffusion model applied directly to motion space, and our method allows for editability. We denote this
feature with a checkmark symbol, ‘✓’. It’s worth noting that MotionDiffuse [44] is also capable of editability, although no
specific application is provided. In the table, we represent this with a hyphen symbol, ‘−’. While applying the diffusion pro-
cess directly to motion space provides editable capabilities for various applications, the inference time of diffusion models is
not practical for real-time applications. The inference time is nearly threefold the duration of the generated motion sequence.
Specifically, it takes 28.112 seconds on average to generate 196 frames, which is equivalent to a 9.8-second motion sequence.
On the other hand, MLD [4] performs a diffusion process on a single motion latent space to speed up the generation time.
However, the compression of its encoder not only results in the loss of fine-grained synthesis detail but also restricts its ability
to edit the motion. T2M-GPT [43] and AttT2M [47] compress motion into multiple temporal embeddings, leading to faster
generation time. However, due to their autoregressive approach, they lack the ability to see future tokens, which also results
in a loss of editability, as indicated by the ’✗’. Table 7 shows that our approach exhibits the highest quality and preserves
editable capabilities while employing only 0.081 seconds on average to generate motion.

Table 7. Comparison of the inference speed and quality of generation on text-to-motion along with the editable capability of each model. ‘✓’ means editable
while ‘✗’ is not and ‘−’ refers to has-capability but no application provided. We calculate the Average Inference Time per Sentence (AITS) on the test set
of HumanML3D [12] without model or data loading parts. All tests are performed on a single NVIDIA RTX A5000.

Methods
AITS

(seconds) ↓
R-Precision

Top-1 ↑ FID ↓ Edit

MDM 28.112 0.320 0.544 ✓
MotionDiffuse 10.071 0.491 0.630 −

MLD 0.220 0.481 0.473 ✗
T2M-GPT 0.350 0.491 0.116 ✗
AttT2M 0.528 0.499 0.112 ✗

MMM (our) 0.081 0.515 0.089 ✓

C. Codebook Reset
During stage 1, the motion tokenizer learns discrete tokens as discussed in 3.1. Besides codebook factorization, we also
adopt codebook reset to prevent codebook collapse, where the majority of tokens are allocated to only a few codes, while
the rest of the codebook entries are inactive. As shown in our experiments, the codebook reset frequency directly affects
codebook utilization and thus motion generation quality. For example, simply implementing codebook reset every training
iteration impedes the codebook from learning motion tokens effectively, aggravating codebook collapse. As visually depicted
in Figure 8, metrics such as FID score, R-precision, and Multi-modal Distance are initially learned during the early stages



of training. However, when codebook collapse occurs, all the metrics significantly worsen. In contrast, resetting the unused
codebook less frequently means the codebook will not be fully utilized, causing less fine-grain detail that the codebook can
capture, which shows worse quality in 60 to 80 codebook reset iterations in Table 8.

Moreover, the results in Stage 1: Motion Tokenizer and Stage 2: Conditional Masked Transformer may not align. This
is because the Stage 1 objective is the reconstruction task without text condition, while the Stage 2 objective is to generate
motion conditioned by text. Therefore, even though resetting every 40 iterations leads to the best performance in the first
stage, resetting the codebook every 20 iterations works best in the text-to-motion task.

Table 8. Ablation results on codebook reset every different number of training iterations. Codebook reset iteration in stage 2 indicates the pretrained models
from stage 1.

Stage1: Motion Tokenizer

Codebook Reset Every
Number of Training Iteration

R-Precision ↑
FID ↑ MM-Dist ↓ Diversity → Loss ↓

Top-1 Top-2 Top-3

1 Iteration Diverge (as shown in Figure 8)

20 Iterations 0.503 0.698 0.793 0.075 3.027 9.697 0.05156
40 Iterations 0.507 0.698 0.793 0.059 3.013 9.629 0.05196

60 Iterations 0.507 0.698 0.793 0.075 3.019 9.710 0.05185

80 Iterations 0.505 0.697 0.793 0.079 3.022 9.658 0.05163

Stage2: Conditional Masked Transformer

Codebook Reset Every
Number of Training Iterations (From 1st Stage)

R-Precision ↑
FID ↑ MM-Dist ↓ Diversity → MModality ↑

Top-1 Top-2 Top-3

20 Iterations 0.515 0.708 0.804 0.089 2.926 9.577 1.226
40 Iterations 0.508 0.702 0.798 0.108 2.954 9.645 1.136

60 Iterations 0.518 0.710 0.805 0.0923 2.897 9.7163 1.157

80 Iterations 0.507 0.701 0.797 0.111 2.963 9.541 1.208
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Figure 8. Codebook collapse effects in FID score, R-precision, and Multi-modal Distance metrics on the evaluation set during training using codebook reset
in every training iteration.

D. Influence of Word Embedding via Cross Attention

As discussed in Section. 3.2, word embedding and sentence embedding help the model learn global and local text-to-motion
relationship. We ablate the number of cross attention between word and motion embeddings to study the influence of word
embedding. We replace self-attention with cross-attention at the starting layers while maintaining the same total number of 18
layers. The results presented in Table 9 indicate that a higher number of cross-attention layers leads to improved R-Precision
but also worsens the FID score.



Table 9. Ablation results on the number of cross attention layers.

Number of
Cross Attention Layer

R-Precision ↑
FID ↓ MM-Dist ↓ Diversity → MModality ↑

Top-1 Top-2 Top-3

0 Layer 0.486 0.674 0.772 0.082 3.108 9.528 1.224

1 Layer 0.515 0.708 0.804 0.089 2.926 9.577 1.226

2 Layer 0.522 0.714 0.807 0.090 2.902 9.587 1.206

4 Layer 0.524 0.716 0.810 0.094 2.891 9.651 1.234

9 Layer 0.527 0.721 0.816 0.114 2.872 9.613 1.325

E. Confidence-based Masking

During the inference stage, MMM adopts confidence-based masking as shown in Figure 3. To understand the behavior of this
masking strategy, we visualize the confidence levels of all sequence motion tokens in each iteration. As illustrated in Figure
9 and Figure 10, the x-axis represents the indices of temporal tokens ranging from 0 to 48 (where 49 tokens correspond to
196 frames, as 4 frames are compressed into 1 token), and the y-axis indicates the 10 iterations during the generation process.
The tokens with the highest confidence are predicted and used as input conditions for the next iteration. In the initial iteration
(x-axis = 0), Figure 9 suggests that the model predicts most tokens with very high confidence when it solely focuses on the
text condition without being constrained by other prior tokens, as all tokens are masked. However, in the second iteration,
conditioned by the highest confidence token from the first iteration, the model’s confidence drops before gradually increasing
in the following iterations. By the final iteration, all tokens are predicted, and no [MASK] tokens remain, as shown in Figure
10. Notably, we observe that the increasing confidence tends to be around the location of the previous high-confidence token
and expands in the later iteration.
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Figure 9. Visualization of the confidence in each iteration from high confidence (■) to low confidence(■)
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Figure 10. Visualization of mask tokens in each iteration. ■ indicates [MASK] tokens, and □ refers to unmasked tokens.

F. Inference Speed Relative to Motion Length

One notable advantage of our approach resides in its superior inference speed relative to the length of the generated motion. In
particular, we use a dynamic masking schedule to calculate the number of [MASK] tokens mt at iteration t w.r.t. maximum
iteration T , the length of the motion tokens L, and the maximum number of motion tokens M that can be taken by the
conditional transformer as the inputs, where M is determined by the maximum-length motion in the datasets. We compute



the number of mask nM at t iteration by a mask scheduling function as follows:

nM (t) =

⌈
γ

(
t

Tdyn

)
· L

⌉
. (4)

where the total iteration of each sample, i.e., Tdyn = T · L
M with L ≤ M , is proportional to its sample length L. γ() is a

decaying function. The choice of the decaying function is discussed in Section G.
As shown in Figure 11, diffusion-based approaches, MDM [35], MotionDiffuse [44], and MLD [4], exhibit the same

inference time regardless of the number of generated frames. In contrast, token-based approaches such as T2M-GPT [43]
and AttT2M [47] show slower inference speeds than MLD [4] for long-length sequences but faster speeds for short sequences.
Our approach, on the other hand, is not only faster than all state-of-the-art approaches for long sequences but even faster for
short sequence generation. Specifically, the inference speed for a 40-frame sequence can be as fast as 0.018 seconds.

This behavior offers a significant advantage for long-range generation. As discussed in Section 4, to generate long-range
motion, we combine multiple short motions with transition tokens, which can be generated in parallel. Since the transitions
are short and our method’s inference speed is relative to the motion length, transition generation can be completed in just
a single iteration, as opposed to the thousand steps required by diffusion-based models. In particular, we can generate a
10.873-minute sequence in only 1.65 seconds.

Figure 11. Comparison of Average Inference Time per Sentence (AITS) by the length of motion sequence (number of frames).

It is worth noting that the HumanML3D [12] dataset is heavily skewed towards 196-frame samples (around 1680 samples),
while all other shorter samples have less than 200 samples per length. Since our method’s speed is relative to the length of
the generated samples, the reported average speed in Table 7 could be even significantly lower if the number of samples by
length was equal. The distribution of samples by their length is visualized in Figure 12.
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Figure 12. The number of samples in HumanML3D [12] test set by length



G. Mask Scheduling Function
As discussed in the previous section, the mask scheduling function aims to determine the number of tokens to be masked
during each iteration during inference. We experiment with three mask scheduling functions to study their influence on
motion generation, varying the number of iterations. Let L denote the length of generated motion and The three mask
scheduling functions are described as follows:
1. Cosine function represents a concave dependency which can be written as nM (t) = L · cos( 12π

t
Tdyn

)

2. Linear function is simply an inverse relationship function of x and y: nM (t) = L · Tdyn−t
Tdyn

3. Square Root function is a representative convex function, expressed as nM (t) = L · (1− ( t
Tdyn

)2)

In Table 10, we experiment with each mask scheduling function with 5, 10, 15, 20, 25, and 30 inference iterations. The
results show that Square Root yields the worst result. Linear performs the best FID score at 15 iterations and can reach the
best Top-1 R-precision of 0.519. While Cosine can achieve its best FID score of 0.089 at only 10 iterations and reach the
best Top-1 R-precision at 0.518.

Table 10. Ablation results on different numbers of inference iterations with cosine, linear, and square root mask scheduling functions.

Number of Inference Iterations
R-Precision ↑

FID ↑ MM-Dist ↓ Diversity → MModality ↑
Top-1 Top-2 Top-3

Cosine

5 0.505 0.695 0.791 0.169 3.003 9.370 1.414
10 0.515 0.708 0.804 0.089 2.926 9.577 1.226

15 0.516 0.710 0.806 0.091 2.919 9.576 1.134

20 0.518 0.710 0.807 0.096 2.912 9.590 1.058

25 0.517 0.710 0.805 0.102 2.911 9.682 1.008

30 0.515 0.711 0.807 0.100 2.908 9.698 0.937

Linear

5 0.505 0.693 0.789 0.195 2.995 9.399 1.435
10 0.514 0.707 0.804 0.090 2.920 9.584 1.190

15 0.518 0.710 0.805 0.086 2.910 9.583 1.133

20 0.519 0.713 0.808 0.091 2.900 9.605 1.057

25 0.517 0.713 0.808 0.096 2.900 9.715 1.023

30 0.520 0.713 0.808 0.103 2.907 9.632 0.9774

Square Root

5 0.497 0.685 0.781 0.379 3.057 9.271 1.511
10 0.508 0.701 0.798 0.174 2.960 9.399 1.297

15 0.512 0.705 0.801 0.119 2.933 9.448 1.241

20 0.516 0.708 0.804 0.099 2.916 9.582 1.174

25 0.518 0.709 0.805 0.092 2.909 9.540 1.185

30 0.520 0.712 0.807 0.093 2.910 9.610 0.9815

H. Token Sampling Strategies for Parallel Decoding
After the tokens are masked out during each iteration, the masked tokens are decoded in parallel in the next iteration. The
decoding process is based on stochastic sampling, where the tokens are sampled based on their prediction confidences.
In particular, we investigate three sampling strategies, including temperature, top-k, and top-p, on the motion generation
performance. These sampling strategies are widely adopted by natural language generation tasks, where top-p sampling
generally shows superior performance compared with top-k and temperature-based sampling. However, our experiments
show that the temperature-based and top-k sampling yields the best performance for the motion generation task.

Temperature Sampling. Temperature sampling generates the tokens according to the softmax distribution function
shaped by a temperature parameter β, as shown below:

p(yi|YM̄ ,W ) =
exp(ei/β)∑
i∈E exp(ei/β)

where ei is logits for motion code yi from the codebook and E is the motion codebook. Low temperature gives more weight
to the motion tokens with high prediction confidence. High-temperature trends to sample the tokens with equal probability.



Table 11 shows that with temperature β = 1, we can achieve the best overall generation performance measured by FID, while
maintaining competitive performance for other metrics.

Table 11. Ablation results on different temperatures.

Temperature (β)
R-Precision ↑

FID ↑ MM-Dist ↓ Diversity → MModality ↑
Top-1 Top-2 Top-3

.5 0.517 0.714 0.810 0.098 2.893 9.725 0.744

1 0.515 0.708 0.804 0.089 2.926 9.577 1.226

1.2 0.504 0.695 0.792 0.140 2.998 9.484 1.446

1.5 0.478 0.664 0.761 0.495 3.186 9.211 1.884

Top-k Sampling. Top-k sampling samples the token from the top k most probable choices. In particular, it first finds the
top-k codebook entries to form a new codebook consisting of k entries, Ek ∈ E, which maximizes

∑
i∈Ek p(yi|YM̄ ,W ).

Then, the original distribution is re-scaled to a new distribution p′(yi|YM̄ ,W ), from which the motion token is sampled. In
particular, p′(yi|YM̄ ,W ) = p(yi|YM̄ ,W )/psum, where psum =

∑
i∈Ek p(yi|YM̄ ,W ). “10%” refers to the sampling from

only the top 10% of most probable motion tokens from the codebook entries.“100%” indicates the use of all codebook entries.
As shown in Table 12, k = 100% leads to the best performance, which is mathematically equivalent to temperature sampling
with temperature β = 1.

Table 12. Ablation results on different probability of Top-K sampling.

Top-k %
R-Precision ↑

FID ↑ MM-Dist ↓ Diversity → MModality ↑
Top-1 Top-2 Top-3

10% 0.511 0.705 0.803 0.088 2.930 9.636 1.180

30% 0.512 0.706 0.803 0.093 2.928 9.624 1.192

50% 0.515 0.707 0.804 0.093 2.926 9.637 1.208

70% 0.512 0.705 0.802 0.092 2.934 9.506 1.202

90% 0.514 0.706 0.803 0.091 2.927 9.594 1.159

100% 0.515 0.708 0.804 0.089 2.926 9.577 1.226

Top-p Sampling. The Top-P strategy, also called nucleus sampling, selects the highest probability tokens whose cu-
mulative probability mass exceeds the pre-chosen threshold p. In particular, it first finds the top-p codebook Ep ∈ E,
which is the smallest set such that

∑
i∈Ek p(yi|YM̄ ,W ) > p. Then, the original distribution is re-scaled to a new distri-

bution p′(yi|YM̄ ,W ), from which the motion token is sampled. In particular, p′(yi|YM̄ ,W ) = p(yi|YM̄ ,W )/psum, where
psum =

∑
i∈Ep p(yi|YM̄ ,W ). p = 0.1 refers to the sampling from only a set of probable tokens from the codebook entries

whose summation of prediction confidences is larger than 0.1. p = 1 indicates the use of all codebook entries. As shown
in Table 13, selecting only 0.1 of codebook entries can improve FID score, however, worsens R-precision, MM-Dist, and
MModality.

Table 13. Ablation results on different probability of Top-P sampling.

Probability of Top-P Sampling
R-Precision ↑

FID ↑ MM-Dist ↓ Diversity → MModality ↑
Top-1 Top-2 Top-3

0.1 0.511 0.704 0.802 0.084 2.932 9.518 0.060

0.3 0.516 0.711 0.807 0.093 2.909 9.589 0.480

0.5 0.516 0.711 0.807 0.091 2.905 9.622 0.739

0.7 0.518 0.712 0.809 0.090 2.900 9.645 0.963

0.9 0.516 0.710 0.806 0.089 2.910 9.636 1.079

1 0.515 0.708 0.804 0.089 2.926 9.577 1.226



I. Qualitative Results

I.1. Temporal Motion Editing.

In this section, we show that our method is not only able to edit the motion in-betweening task but also able to modify various
temporal motion tasks such as temporal motion outpainting, temporal motion completion with text condition, and temporal
motion completion without text condition, as shown in Figure 13.

a person walks forward.

person does a cart wheel.

a woman crawls forward.

a person uses the left arm to do an uppercut punch.

(a) Temporal
Motion Outpainting

(b) Temporal Motion Completion
With Text Condition

(c) Temporal Motion Completion
Without Text Condition

A person jumps forward.

Figure 13. Qualitative results of (a) temporal motion outpainting and (b) temporal motion completion with text condition (c) temporal motion completion
without text condition where the red frames indicate generated motion and the blue frames represent conditioned frames.

I.2. Upper Body Editing

The upper body editing task combines upper and lower body parts from different prompts which can lead to the out-of-
distribution issue as the joint distribution of upper and lower body parts from the prompts is not present in the dataset. We
overcome this challenge by introducing [MASK] tokens into the lower body condition tokens as controllable parameters to
adjust the influence of lower body parts of the generation. As illustrated in Figure 14, upper body parts are generated with
text “A man punches with both hands.” conditioned by lower body parts “a man rises from the ground, walks in a circle and
sits back down on the ground.”, showing in three cases. Top figure shows generated upper body parts with all masked lower
body tokens which means no lower body part condition at all. The result shows uncorrelated motion between upper and lower
body parts. On the other hand, middle figure presents the generated upper body parts with all lower part conditions without
any mask. The generated motion is realistic, however, less expressive as the influence from the lower body part is too strong
and the joint distribution of upper and lower body parts is unseen in the training set. To solve this problem, the bottom figure
generates motion by conditioning only some lower body tokens. This can be achieved by applying [MASK] tokens to some
of the lower body tokens. The result shows that the motion is realistic while expressing very strong corresponding motion to
both upper and lower body parts.
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Figure 14. Effect of lower body masked tokens. “✓” shows frames that exhibit strong correlation to the textual description of the upper body part

I.3. Long Sequence Generation

In Figure 15, we generate a long motion sequence by combining multiple text prompts. First, our model generates the motion
token sequence for each prompt (red frames). Then, we generate transition motion tokens (blue frames) conditioned on the
end of the previous motion sequence and the start of the next motion sequence.

'a person walks forward then turn left.'

'a person crawling from left to right'

'a person dribbles a basketball then shoots it.'

'the person is walking in a counter counterclockwise circle.' 'a person is sitting in a chair, wobbles side to side'

Transition

Transition
Transition

Transition

Figure 15. Long Sequence Generation. An arbitrary long motion sequence is generated from multiple prompts (red frames) combined with transitions (blue
frames)

J. Limitations
Our model may face challenges in rendering some fine-grain details for exceptionally long single textual descriptions. This
is due to limitations in text-to-motion training datasets, which support motions up to a maximum of 196 frames. To address
this, we are exploring how our model’s long motion generation capabilities can be leveraged. Specifically, we aim to integrate
large language models to effectively segment a lengthy texture description into several concise text prompts. Additionally,
our current model does not support the generation of interactive motions involving multiple individuals. This limitation is
not unique to our model but is also present in other competing methods.
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