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# Surface Hypotheses Pitch Angles
1 {0◦}
3 {−2◦, 0◦, 2◦}
5 {−2◦,−1◦, 0◦, 1◦, 2◦}

15 {−5◦,−2◦,−1.7◦,−1.3◦,−1◦,−0.7◦,−0.3◦, 0◦,
0.3◦, 0.7◦, 1◦, 1.3◦, 1.7◦, 2◦, 5◦}

27

{−10◦,−8.5◦,−7◦,−5.8◦,−4.5◦,−3.3◦,−2◦,
−1.7◦,−1.4◦,−1◦,−0.8◦,−0.6◦,−0.3◦, 0◦,
0.3◦, 0.6◦, 0.8◦, 1◦, 1.4◦, 1.7◦, 2◦,
3.3◦, 4.5◦, 5.8◦, 7◦, 8.5◦, 10◦}

Table 1. Different orientations of surface hypotheses.

1. Architecture Details
In the following section, we provide additional details re-
garding the model architecture.

1.1. Backbone

Similar to [2], we use a modified version of EfficientNet
[13] as our backbone. More precisely, we extract a specific
layer as the following module’s input. Then, several con-
volution layers are applied, such that the backbone module
outputs four different scaled front-view feature maps. Their
resolutions are 180×240, 90×120, 45×60, 22×30. Each
of the front-view feature maps is then fed into the spatial
transformation module. The total number of parameters of
the backbone is 10.28M.

1.2. Spatial transformation

The depth branch consists of two convolution layers each
with 128 kernels and zero-padding, followed by batch norm
and ReLU activation. An additional convolution layer uses
S (number of surface hypotheses) kernels of size 1× 1 fol-
lowed by a channel-wise softmax to obtain the depth distri-
bution. Since the depth distribution should be similar for all
front-view feature maps of different scales, only one feature
map needs to be propagated through the depth-branch. We
use the feature map with lowest resolution 22 × 30 and re-
peat the resulting depth distribution of shape 22 × 30 × S
(with S the number of surface hypotheses) at the neighbor-
ing feature cells to match the higher resolutions. Conse-
quently, we obtain depth distributions for all scales of front-
view feature maps sharing the same depth information.

To model the road surface’s region of interest, we select
surface hypotheses such that the distribution of lane height
is covered (see Fig. 1). The surface hypotheses are planes
crossing the origin of the 3D coordinate system with differ-
ent orientations with respect to the pitch angle. The differ-
ent configurations that we use in the experimental section
are listed in Table 1.

Figure 1. Height distribution (z) along the longitudinal direction
(y) of ground truth line points (blue points) on OpenLane dataset.
Height deviations in the near-range (left side) tend to be smaller
than in the far-range (right side) spanning a triangle-like region of
interest in the y-z-profile. For the spatial transformation, we sam-
ple surface hypotheses (green) of different pitch angles to cover
this region.

After the front-view features are lifted to 3D space they
are accumulated on BEV grids. Analogously to the multi-
scale front-view feature maps, we also model multi-scale
BEV feature maps. The different resolutions are 208×128,
104× 64, 52× 32, 26× 16.

1.3. BEV feature fusion

The BEV feature fusion module consists of convolution
layers operating on each scale to down-sample the higher
resolutions to the lowest resolution feature map of shape
26 × 16. Afterwards, all feature maps are simply concate-
nated and fed through several layers preserving the resolu-
tion. Each contains a convolution with zero-padding, batch
norm and ReLU activation. The last convolution layer uses
64 channels, thus, the input to the detection head is of shape
26× 16× 64.

1.4. Detection head

The detection head operates on a BEV feature map of shape
26 × 16 × 64 covering a range of [−10m, 10m] in lateral
x-direction and [3m, 103m] in longitudinal y-direction.
Based on the location of initial line proposals, features are
pooled from the BEV feature map for each line proposal
as illustrated in Fig. 2. More precisely, we step through
a proposal inside the BEV feature grid with a small step
size and determine the nearest cells, where the maximum
number of cells is limited to max cells. We then take the
64-dimensional features of the set of selected cells and flat-
ten it to a feature vector of size 64 · max cells. If less than
max cells are pooled for the proposal, the remaining entries



Figure 2. The detection head of our model: First, features are
pooled from the BEV feature map for each proposal. After-
wards, pooled features are flattened and fed through several fully-
connected (FC) layers, which share weights for all proposals, to
finally obtain the lane parameters.

of the feature vector are simply masked out. The result-
ing feature vector for each line proposal is then propagated
through the fully-connected layers as depicted in Fig. 2. Im-
portant to notice is also that the fully connected layers share
weights among all proposals to learn the same patterns for
different line orientations from the BEV feature map. Fi-
nally, for each proposal the model yields parameters to de-
scribe lane line geometry and visibility ({αk, βk, γk}Kk=1),
as well as a line presence probability ppr and a probability
distribution pcat for different line categories.

2. Training
In this section, we describe the details regarding the training
procedure.

2.1. Initial proposals and Matching

We use several initial line proposals to cover a wide vari-
ety of lane geometries. More precisely, the proposals are
straight lines with different orientations and different posi-
tions in the x-y-plane. After investigations of different set
configurations, we found the best set of proposals to be the
one with M = 64 proposals that is illustrated in Fig. 3.

The matching of ground truth lines to the line proposals
is inspired by [12], which choose the unilateral chamfer dis-
tance (UCD) as a matching criterion. However, we found
that a combination of the unilateral chamfer distance (nor-
malized, thus UCD ∈ [0, 1]) and an orientation cost based
on the cosine distance (CosD ∈ [0, 1]) better reflects how
well a line proposal f̄ resembles a ground truth line de-
scribed by the set of ground truth points PGT . Thus, the
pair-wise matching cost between a proposal with index i
(with i ≤ M ) and a ground truth line with index j (with

Figure 3. Visualization of different initial line proposals. Colorful
lines represent the line proposals. The black lines show the grid of
the final BEV feature map.

j ≤ MGT and MGT the number of ground truth lines) is
given as

L(ij) =λUCD · UCD(f̄
(i)
, P(j)

GT )+ (1)

λCosD · CosD(f̄
(i)
, P(j)

GT ) , (2)

with weights for each cost component λUCD and λCosD.
Computing the cost between each line proposal and each
ground truth line then yields a cost matrix of shape
M ×MGT . Finally, for each ground truth line we assign
the proposals with pair-wise cost under a specified match-
ing threshold L(ij) < Lthr.

2.2. Losses and ground truth

We provide more details regarding losses and ground truth.
Indicator function for prior regularization. The par-
allelism loss uses an indicator function 1

(ij)
p deciding,

whether the loss is applied to the point pair consisting of
point p on line i and the best matching point in normal di-
rection p∗ on line j. The indicator function is defined as

1
(ij)
p =

{
1 if OD

(ij)
p∗ < ODthr and σ(ij) < σthr ,

0 else .
(3)

As Eq. (3) shows, the parallelism criterion holds if two con-
ditions are fulfilled. The first condition OD

(ij)
p∗ < ODthr

takes into account the orthogonal distance (OD) of the best
matching point p∗ on line j to the normal plane spanned by
the tangent T(i)(tp) at point p on line i, which is given as



OD
(ij)
p∗ = T(i)(tp)

T ·
(
f (j)(tp∗)− f (i)(tp)

)
. (4)

Hence, only point pairs are considered for the parallelism
loss, which actually lie in opposite normal direction. This
is implied by the orthogonal distance having a small enough
value, i.e. if the value is lower than a certain threshold
ODthr. For instance, if two neighboring lines have different
ranges, the non-overlapping range has no neighbor points
that have an orthogonal distance smaller than the threshold.
Thus, the condition ensures that only point pairs are consid-
ered, which are actual neighbors in normal direction.

The second condition σ(ij) < σthr guarantees that par-
allelism is not reinforced for line pairs, which presumably
belong to lanes of different orientations, e.g. for merge
and split scenarios. The distinction between parallel and
non-parallel line pairs can be determined by evaluating the
standard deviation σ(ij) of the euclidean distances D(ij)

p of
point pairs of neighboring lines i and j. The standard devi-
ation is defined as

σ(ij) =

√√√√ 1

|P(i)|
∑

p∈P(i)

D
(ij)
p − D̄(ij) , where (5)

D̄(ij) =
1

|P(i)|
∑

p∈P(i)

D(ij)
p , (6)

and the euclidean distance for one point pair as D
(ij)
p =∣∣∣∣f (i)(tp)− f (j)(tp∗)

∣∣∣∣
2
. For lines of different orientations

(as for merging and splitting lines) this standard deviation
is rather high and more likely surpasses the threshold σthr

in contrast to lines belonging to the same lane, where σ(ij)

is rather small.

Ground truth generation for surface loss. For the surface
loss computation, height ground truth ẑuv needs to be pro-
vided on the X×Y BEV grid. We approximate this surface
ground truth by interpolation of the 3D lane ground truth.
For this, we simply compute the convex hull of ground truth
lines and interpolate the height value at each cell inside the
convex hull. Only cells inside the convex hull are consid-
ered for the surface loss, whereas cells outside the convex
hull are simply masked out. This is reflected by the indi-
cator function 1uv , hence 1uv = 1 if cell (u, v) is inside
the hull, else 1uv = 0. The result of the grid-wise height
ground truth generation is visualized in Fig. 4 for an up-hill
and a down-hill scenario.

Lane presence and category classification losses. For
both classification losses, we apply focal loss [9]. For line
presence, which only considers the two classes present and

(a) Down-hill scenario

(b) Up-hill scenario

Figure 4. Examples of the surface ground truth generation.
Ground truth lines are visualized as blue lines and height ground
truth per cell as blue dots. The black dots correspond to cells out-
side the convex hull of 3D lines and are not considered for the
surface loss.

not present, the loss is given as

Lpr =− 1

M

M∑
i=1

(
p̂(i)pr ·

(
1− p(i)pr

)γf · log
(
p(i)pr

)
+ (7)

(
1− p̂(i)pr

)
·
(
p(i)pr

)γf · log
(
1− p(i)pr

))
, (8)

with predicted line presence probability p
(i)
pr for line i and

line presence ground truth p̂
(i)
pr = {0, 1}. γf ≥ 0 denotes

the focusing parameter introduced in [9] to handle class im-
balance.

The category classification loss is applied for datasets,
which provide lane category information in the ground
truth. Analogously to Eq. (8), the loss is given as

Lcat =− 1

M

M∑
i=1

1

Ccat

Ccat∑
c=1

(
p̂
(i)
cat[c]· (9)

(
1− p

(i)
cat[c]

)γf · log
(
p
(i)
cat[c]

))
, (10)

with the predicted category probability vector p
(i)
cat ∈

RCcat , which represents the categorical distribution for line
i, and the ground truth one-hot vector p̂(i)

cat ∈ {0, 1}Ccat .
Moreover, p(i)

cat[c] denotes the cth entry of the vector p(i)
cat.



Regression loss. For both, the regression and visibility loss,
the curve argument tp has to be determined for a respec-
tive point in the ground truth p ∈ PGT . Since our model
learns to predict orthogonal offsets from the assigned line
proposal, the points are projected orthogonal onto the line
proposal as illustrated in Fig. 5. After having obtained the
curve arguments in orthogonal direction, the regression loss
for a line proposal i is given as

L(i)
reg =

1

|P(i)
GT |

∑
p∈P(i)

GT

v̂(i)p ·
∣∣∣∣∣∣w ⊙

(
f (i)(tp)−

x̂
(i)
p

ŷ
(i)
p

ẑ
(i)
p

)∣∣∣∣∣∣
1

(11)

with v̂
(i)
p the ground truth visibility information and

(x̂
(i)
p , ŷ

(i)
p , ẑ

(i)
p )T the 3D position of a ground truth point p

on line i. w ∈ R3 is a vector with weighting factors for each
3D component providing for a more balanced regression in
each dimension. As shown in Eq. (11) and illustrated in
Fig. 5a, only visible points are utilized. The total regression
loss for all lines is given as

Lreg =
1

M

M∑
i=1

p̂(i)pr · L(i)
reg . (12)

For completeness, we also provide the visibility loss for
each line as

L(i)
vis =− 1

|P(i)
GT |

∑
p∈P(i)

GT

v̂(i)p · log
(
σ
(
v(i)(tp)

))
+ (13)

(1− v̂(i)p ) · log
(
1− σ

(
v(i)(tp)

))
. (14)

As illustrated in Fig. 5b, all points from the ground truth
line are considered. The total visibility loss is then given as

Lvis =
1

M

M∑
i=1

p̂(i)pr · L(i)
vis . (15)

3. Additional implementation details
In the following, we provide more implementation details.

3.1. Matching

The weights for the matching cost are λUCD = 0.5 and
λCosD = 0.5, and the distance threshold Lthr = 0.4.

3.2. Losses

The weights for the different losses are λpr = 20, λcat = 2,
λreg = 0.5, λpar = 10, λsm = 0.01, λcurv = 1,
λprior = 1, λsurf = 0.1. The focusing parameter for the
classification losses is γf = 6.0 and the vector to weight

(a) Regression (b) Visibility

Figure 5. Projection of ground truth points p onto line proposal in
normal direction to obtain curve arguments tp. For regression (a)
only visible points are considered (continuous lines), for visibility
(b) all points are taken into account, where invisible points are
marked with dashed lines.

each dimension for the regression loss is w = (2, 10, 1)T .
The thresholds for the indicator function used for the prior
losses are σthr = 2m and ODthr = 1m and the thresholds
for the maximum curvatures are κxy = 5 and κz = 0.1.
The set of ground truth points considered for the visibility
and regression losses has size |PGT | = 20. For the par-
allelism and surface smoothness loss we sample |P| = 20
points from the predictions and |P| = 100 points for the
curvature loss.

3.3. Training procedure

In the training, we use Adam optimizer [7], with an initial
learning rate of 2 ·10−4 for OpenLane and 10−4 for Apollo.
We use a dataset specific scheduler: We train for 30 epochs
on OpenLane, where the learning rate is decreased to 5 ·
10−5 after 27 epochs, and for 300 epochs on Apollo, where
the learning rate is divided by two every 100 epochs.

3.4. Others

The maximum number of cells used for feature pooling in
the detection head is max cells = 64.

4. Additional results

In this section, we provide additional quantitative and qual-
itative results.

4.1. Ablation studies

Table 2 shows the performance of 3D-SpLineNet [12] on
OpenLane300 and the effect of different design adaptations.
It is clearly evident that these modifications result in large
improvements that were necessary to make the approach ap-
plicable to real-world data.



Config 3D-SpLineNet +BB +BB+MS +BB+MS+FP
F1(%)↑ 50.9 53.7 58.7 62.9

Table 2. Performance on OpenLane300 of 3D-SpLineNet base-
line and architecture adaptations, i.e. larger backbone (BB), multi-
scale features (MS) and feature pooling in detection head (FP).

Uniform Sampling Rate 1 3 5 15 27
F1-Score(%)↑ 15.4 30.9 39.6 48.4 51.1

Surface H. Sampling Rate 1 3 5 15 27
F1-Score(%)↑ 65.0 65.9 66.6 66.1 66.0

Table 3. Effect of the sampling strategy used in the spatial trans-
formation on OpenLane300. Uniform ray sampling is compared to
samples obtained from intersections of rays with surface hypothe-
ses.

In Table 3 we compare two different strategies to draw
samples from the camera rays to investigate the effect of
using priors in form of surface hypotheses for this compo-
nent. The samples determine the frustum-like pseudo point
cloud in 3D space as described in Sec. 3.3 in the main paper.
For the uniform sampling (comparable to [11]), the samples
are drawn along the rays with equal step size in the range
[3m, 110m] to guarantee that the whole space of interest is
covered. We compare this method to our sampling based on
prior-incorporated surface hypotheses as proposed and de-
scribed in the main paper. As shown in Table 3, the perfor-
mance gaps between the two strategies are significant. This
highlights the importance of modeling geometry-aware 3D
features by generating samples in the space of interest us-
ing knowledge about the surface geometry. The differences
in F1-Score for varying sampling rates also imply that a
uniform sampling strategy requires high sampling rates to
achieve comparable performance. In contrast, using surface
hypotheses, lower sampling rates are sufficient which keeps
the computational costs lower.

4.2. Quantitative results

In Table 4 we report the detailed evaluation metrics of our
best performing LaneCPP model for the different scenarios
on OpenLane. We provide geometric errors, as well as F1-
Score, precision, recall and categorical accuracy.

Besides, we provide a more detailed evaluation on the
Apollo 3D Synthetic dataset on all three test sets as shown
in Table 5.

4.3. Qualitative results

We show additional qualitative results on OpenLane in
Fig. 6. Considering the top rows, it is clearly evident in all
examples that our LaneCPP detects lanes more accurately
compared to 3D-SpLineNet, which performs poorly on real-
world data. The bottom row shows a direct comparison of

LaneCPP and PersFormer. Particularly in curves (Fig. 6a -
Fig. 6b) and up- or down-hill scenarios (Fig. 6d - Fig. 6f)
our model shows high-quality detections compared to Pers-
Former. For the intersection scenario (Fig. 6c) with many
different line instances, LaneCPP shows overall good re-
sults but still leaves room for improvement with respect to
geometrical precision. A possible solution to improve the
behavior in such cases could be to model lane line relations
explicitly to better capture global context as mentioned in
our future work section. Moreover, we prove that our model
is able to classify line categories accurately as illustrated in
the middle row plots.

We further demonstrate the results of our model on
Apollo 3D Synthetic illustrated in Fig. 7. As shown, our
model achieves accurate detection results in simple scenar-
ios from the Balanced Scenes test set (Fig. 7a - Fig. 7b), in
more challenging up- and down-hill scenarios from the Rare
Scenes test set (Fig. 7c - Fig. 7d) as well as in case of vi-
sual variations (Fig. 7e - Fig. 7f). A very challenging scene
is shown in Fig. 7f, where our model manages to capture
the overall line structure well but still could be improved
slightly with respect to close-range x-errors.
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Scenario Method F1-Score(%)↑ AP(%)↑ X-error (m)↓ Z-error (m)↓
near far near far

3D-LaneNet [3] 86.4 89.3 0.068 0.477 0.015 0.202
Gen-LaneNet [4] 88.1 90.1 0.061 0.496 0.012 0.214
3D-LaneNet (1/att) [6] 91.0 93.2 0.082 0.439 0.011 0.242
Gen-LaneNet (1/att) [6] 90.3 92.4 0.08 0.473 0.011 0.247
CLGO [10] 91.9 94.2 0.061 0.361 0.029 0.250

Balanced GP [8] 91.9 93.8 0.049 0.387 0.008 0.213
Scenes PersFormer [2] 92.9 − 0.054 0.356 0.010 0.234

3D-SpLineNet [12] 96.3 98.1 0.037 0.324 0.009 0.213
CurveFormer [1] 95.8 97.3 0.078 0.326 0.018 0.219
BEV-LaneDet [14] 96.9 − 0.016 0.242 0.02 0.216
Anchor3DLane [5] 95.4 97.1 0.045 0.300 0.016 0.223
LaneCPP 97.4 99.5 0.030 0.277 0.011 0.206
3D-LaneNet [3] 72.0 74.6 0.166 0.855 0.039 0.521
Gen-LaneNet [4] 78.0 79.0 0.139 0.903 0.030 0.539
3D-LaneNet (1/att) [6] 84.1 85.8 0.289 0.925 0.025 0.625
Gen-LaneNet (1/att) [6] 81.7 83.2 0.283 0.915 0.028 0.653
CLGO [10] 86.1 88.3 0.147 0.735 0.071 0.609

Rare GP [8] 83.7 85.2 0.126 0.903 0.023 0.625
Scenes PersFormer [2] 87.5 − 0.107 0.782 0.024 0.602

3D-SpLineNet [12] 92.9 94.8 0.077 0.699 0.021 0.562
CurveFormer [1] 95.6 97.1 0.182 0.737 0.039 0.561
BEV-LaneDet [14] 97.6 − 0.031 0.594 0.040 0.556
Anchor3DLane [5] 94.4 95.9 0.082 0.699 0.030 0.580
LaneCPP 96.2 98.6 0.073 0.651 0.023 0.543
3D-LaneNet [3] 72.5 74.9 0.115 0.601 0.032 0.230
Gen-LaneNet [4] 85.3 87.2 0.074 0.538 0.015 0.232
3D-LaneNet (1/att) [6] 85.4 87.4 0.118 0.559 0.018 0.290
Gen-LaneNet (1/att) [6] 86.8 88.5 0.104 0.544 0.016 0.294
CLGO [10] 87.3 89.2 0.084 0.464 0.045 0.312

Visual GP [8] 89.9 92.1 0.060 0.446 0.011 0.235
Variations PersFormer [2] 89.6 − 0.074 0.430 0.015 0.266

3D-SpLineNet [12] 91.3 93.1 0.069 0.468 0.013 0.248
CurveFormer [1] 90.8 93.0 0.125 0.410 0.028 0.254
BEV-LaneDet [14] 95.0 − 0.027 0.320 0.031 0.256
Anchor3DLane [5] 91.8 92.5 0.047 0.327 0.019 0.219
LaneCPP 90.4 93.7 0.054 0.327 0.020 0.222

Table 5. Quantitative evaluation on Apollo 3D Synthetic [4]. Best performance and second best are highlighted.



(a)

(b)

Figure 6. Additional qualitative evaluation on OpenLane [2] test set (1/3). Top row shows 3D-SpLineNet baseline compared to ground
truth. Middle row shows LaneCPP with different lane categories illustrated in different colors and ground truth in dashed lines. Bottom
row shows direct comparison of LaneCPP and PersFormer*.



(c)

(d)

Figure 6. Additional qualitative evaluation on OpenLane [2] test set (2/3). Top row shows 3D-SpLineNet baseline compared to ground
truth. Middle row shows LaneCPP with different lane categories illustrated in different colors and ground truth in dashed lines. Bottom
row shows direct comparison of LaneCPP and PersFormer*.



(e)

(f)

Figure 6. Additional qualitative evaluation on OpenLane [2] test set (3/3). Top row shows 3D-SpLineNet baseline compared to ground
truth. Middle row shows LaneCPP with different lane categories illustrated in different colors and ground truth in dashed lines. Bottom
row shows direct comparison of LaneCPP and PersFormer*.
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Figure 7. Qualitative evaluation on Apollo 3D Synthetic [4]. Our method is compared to the ground truth visualized dashed.
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