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7. Gaussian random orthogonal matrices

Theorem 7.1. Let v ∈ R
d and u ∈ R

d be two random

vectors. Let vi ∼ N (0,σ2I) and ui ∼ N (0,σ2I) for all
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Corollary 7.1.1. Let A ∈ R
n×m and B ∈ R

n×m. All

entries of these matrices are independently sampled from

N (0,σ2I). Then E[AT
B] = 0 ∈ R

m×m.

Proof.

E[AT
B]ij = E[AT

i Bj ] = 0.

8. Implementation details

Dataset. We chose to evaluate our method on human

datasets due to the robustness of face recognition algorithms

for evaluation purposes. While prior works [12, 13, 24, 37]

have employed CLIP-based metrics as a method of evalu-

ating identity alignment, we found that CLIP features are

often poor at identifying fine details in a custom concept. In

Fig. 9, we illustrate that our method works for non-human

objects too.

Evaluation details. We introduce the identity alignment

metric for measuring the ability of our method (and com-

peting baselines) in capturing the target human identity in

resulting generations. We use the ArcFace [41] facial recog-

nition algorithm and consider a detection to be recorded

when the ArcFace distance between two detected faces falls

below 0.680 [41]. We choose to use detection probability

as a metric rather than the raw distance metric as we found
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Figure 9. Identity loss due to crosstalk. We illustrate the effects

of crosstalk by examining the effects of interfering signals be-

tween independently trained LoRAs. Measuring crosstalk through

the norm of the product between two LoRA weights, our method

results in lower crosstalk between independently trained LoRAs.

Combined via the same method, our training regime leads to less

crosstalk and therefore better identity preservation after merging.

the distance metric to favor over-fitted models. Past the de-

tection threshold, the distance metric directly measures the

similarity between two faces, which is not ideal for use-

cases such as re-stylization and accessorization.

Orthogonal adaptation details. In our method, we en-

force the orthogonality constraint through the LoRA down

projection matrix B. This formulation ensures orthogonal-

ity in the row-space of the resulting LoRA matrices. In

theory, we can also achieve orthogonality between trained

weight residuals in the column-space, in which case the or-

thogonality constraint would have to be enforced on the up-

projection matrix A instead. We choose to enforce orthog-

onality in the row-space since the weight residuals inter-

act with the layer inputs through their rows. The concept

preservation formulation presented in Sec. 3 is also reliant

on row-space orthogonality. In our results, we chose to use

the random orthogonal basis method for enforcing orthog-

onality in all our results. Although the Gaussian random

method results in orthogonality on expectation, the orthogo-

nal basis method led to lower crosstalk emperically. The or-

thogonal basis method requires a shared orthogonal matrix

to sample from. In practice, using Stable Diffusion v1.5,

there are only four unique input dimensions for all layers in

the diffusion model (320, 640, 768, 1280). Therefore, we

only have to store four unique square matrices from which

all sampled Bi’s can then be sampled from. These four or-



Figure 10. Multi-concept failure cases. Multi-concept generation remains as an open challenge. Despite employing techniques such as

regionally controllable sampling from prior work [12], this method can still suffer from failure cases such as: (left) ignoring concepts, and

(right) leakage of concept attributes to neighboring identities.

thogonal matrices can be downloaded along with the base

model, but they can also be generated on the fly with a fix

seed to ensure they are shared among all users.

FedAvg merging coefficient. Existing work considers

FedAvg merging with affine coefficients. However, with a

larger number of concepts, affinely combining each LoRA

will lead to dilution of signal from individual LoRAs. It is

also a common practice to scale individual LoRA weights

post-hoc [1] for direct control over the signal strength from

the fine-tuning process. We combine this scaling factor

along with the FedAvg merging factor to obtain a single

scale factor λi as shown in Eq. 1. We consider merging co-

efficients as a hyper-parameter that can be tuned based on

user preferences.

9. Additional results

Illustration of crosstalk. Fig. 9 illustrates the importance

of minimizing crosstalk for identity preservation when

merging LoRA weights into a single model. We measure

crosstalk formally using the norm of the matrix product

between individually trained LoRA weight residuals. Up-

per right of Fig. 9 shwos a direct comparison of the layer-

wise normalized matrix product norms between two LoRAs

trained with and without orthogonality constraints. Our

method leads to a much lower levels of crosstalk, which

translates to better identity preservation as observed from

the resulting generations.

Relation to Orthogonal Fine-Tuning. Recent work by

Qiu et al. [33] (OFT) proposes an alternative method for

fine-tuning that leverages orthogonal rotation matrices. In

this section we would like to point out some fundamental

differences between our method and OFT.

Our method, fine-tunes by optimizing a weight residual

∆θ, whereas OFT uses rotation with a full-rank orthogonal

matrix R. Differences between OFT and LoRA-like fine-

tuning is also heavily highlighted in the OFT manuscript

(Sec. 4). Our concept of orthogonality is also distinct; we

aim for orthogonality between low-rank weight residuals in

multi-subject generation, while OFT employs full-rank or-

thogonal matrices for better single-subject fine-tuning. The

above sets our method apart in theory and application.

We create a modular customization baseline inspired

by OFT. In the spirit of our method, we constrain OFT

to a pre-determined subspace. We achieve this by pick-

ing certain blocks in OFT to be trainable, and fixing the

rest to be the identity. Combining such “constrained”

OFTs would then be

done by sequentially

applying each rota-

tion (shown right).

For OFT, we set r = 8 to match the parameter count of

our experiments. As shown in Tab. 3, OFT* still faces is-

sues in identity metrics post-merging. We believe adapting

OFT for modular customization is a promising new direc-

tion, and we are happy to add relevant baselines and discus-

sion surrounding OFT to the final submission.

Method
Merge

Time

Text Alignment ↑ Image Alignment ↑ Identity Alignment ↑

Single Merged ∆ Single Merged ∆ Single Merged ∆

OFT* <1 s .639 → .646 +.007 .731 → .715 -.016 .718 → .681 -.037

Ours <1 s .624 → .644 +.020 .748 → .741 -.007 .740 → .745 +.005

Table 3. Quantitative comparison of OFT* with our method.

Extended baseline comparisons. In Fig. 11 We show an

extended version of Fig. 6 with generated images of each

identity for each method before they are merged. These

results aim to show that our method is capable of retain-

ing identity alignment with the target concept before and

after merging, while achieving merging of individual Lo-

RAs instantly without any further fine-tuning or optimiza-

tion stages.



Over-fitting. Since we are fine-tuning our network over

a small custom dataset and we initialize our custom tokens

with a user-defined class label, it may be susceptible to over-

fitting. Prior works such as DreamBooth [37] and Custom

Diffusion [24] alleviate this effect by adding a class preser-

vation loss that ensures generating images from the class

token still produces diverse results. In our method, we do

not employ an explicit loss to prevent over-fitting, however,

we found that our fine-tuned models still preserve the abil-

ity to generate diverse images for the trained class label as

shown in Fig. 12

10. Limitations and future work

Our method takes an important step towards achieving

modular customization. However, a few important limita-

tions should also be addressed in future work.

Generating multiple custom concepts within the same

image remains challenging. Simply prompting a merged

model with multiple custom tokens usually leads to incoher-

ent hybrids of both objects. Prior works [12] have explored

spatial guidance for better disentangling concepts in a single

generation, and we have also employed similar techniques

to generate our results. However, these methods still lead

to failure cases as illustrated in Fig. 10. Concepts are often

ignored, or attributes can leak to neighboring concepts. Fu-

ture work should aim to address these struggles to further

enable multi-concept generations.

Storing individual LoRAs, even those trained with our

method can also be expensive. Although LoRAs are already

compressive due to their low-ranked nature, storing a large

bank of concepts for modualr customization can still be ex-

pensive. Works such as SVDiff [13] takes steps towards

further compressing LoRAs while maintaining fidelity of

generated images. However, our method does not naturally

fit in with the SVDiff method, implying the need for a tai-

lored compressing methodology.
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Figure 11. Extended multi-concept results. We show results for each method before and after merging the individually trained models

into a single, merged model. Our method is able to capture the target identity with high fidelity before and after the merging process, while

keeping the merging process instantaneous.
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Figure 12. Preservation of class label. Although our method does not enforce an explicit class preservation loss similar to prior works [24,

37], our method is able to preserve diversity when generating images of the class label used for initialization of the custom concept token.

We show this across three different classes, namely: man, woman, and dog.


