
Supplementary Material for HDQMF: Holographic Feature Decomposition

Using Quantum Algorithms

Prathyush Poduval

University of California, Irvine

Irvine, CA 92617

ppoduval@uci.edu

Zhuowen Zou

University of California, Irvine

Irvine, CA 92617

zhuowez1@uci.edu

Mohsen Imani

University of California, Irvine

Irvine, CA 92617

m.imani@uci.edu

1. More on Hyperdimensional Computing

This section provides a more detailed discussion of HDC

schemes, semantics, and decomposition challenges.

Scheme and data structures: The schema design for a cer-

tain data structure is not unique and is up to the utility of the

resulting representation. For a few typical examples:

1. Dictionaries can be considered as a set of key-value

pairs. In this case, keys and values are atoms, and are

bound together to make pairs: h(x,y) = hx⊙hy , and the

dictionaries is a bundling of such pairs. This is a special

case of the “bind-then-bundle” scheme

2. Sequences considers entries as atoms and represents or-

der via permutation: h[x0,··· ,xn] =
⊙n

i=0 ρ
i(hxi

).
3. n-grams (short sequences of alphabets of length n)

considers alphabets as atoms and also uses permuta-

tion to represent order. However, the way the indexed

atoms are combined is through binding: h[x0,··· ,xn] =⊙n

i=0 ρ
i(hxi

).
The design of the schema needs to ensure that the com-

posite hypervector “works as intended”. For example, a dic-

tionary needs to support the get operation, retrieving a value

by its key. For a simple dictionary D = {1 : a, 2 : b}, we

have the dictionary hypervector hD = h1 ⊙ ha ⊕ h2 ⊙ hb,

and one may retrieve the value for key 1 by (un)binding the

hD with the key hypervector h1 (note that bipolar vectors

are their own inverses):

hD⊙h1 = (h1⊙ha⊕h2⊙hb)⊙h1 = ha⊕h2⊙hb⊙h1 (1)

Because the term h2⊙hb⊙h1 in Eq. (1) is a binding of three

hypervectors, it will be dissimilar to any of its components

and other entries in the value codebook (as well as those in

the key codebook). We thus have a “noisy” version of the

ha, which we can decode using the value codebook.

The data structure and the scheme are only loosely cou-

pled: the data structure offers a useful analogy for under-

standing the functions of a scheme. This analogy assists in

two key ways: firstly, it provides a framework for interpret-

ing the scheme’s utility from the perspective of data struc-

ture; secondly, it facilitates the scheme’s design specifically

for a given data structure. This is best demonstrated by the

difference between the schema for sequences and n-grams.

For sequence encoding, one would want to perform tasks

such as sequence manipulation, data retrieval, and sequence

comparison. This is more suitable for bundling since it pre-

serves the similarity of the components: the resulting se-

quence hypervector will have high similarity with its entries

(permuted by the right amount) and with a hypervector rep-

resenting a similar sequence. As for n-grams, it may be

more desirable to treat each n-gram as different (e.g. in the

case of natural language processing). N-grams are also typi-

cally treated as “tokens” and therefore do not require decod-

ing back to their component. These reasons make binding a

better candidate.

1.1. Establishing HDC Semantic for Interpretabil­
ity:

With the codebooks and basic HDC operators, one may

construct composite hypervectors analogous to more com-

plex data structures. Therefore, one of the advantages of

the HDC framework is that the manipulation of the hyper-

vectors is fully interpretable: every transform by the HDC

operator can be interpreted as a certain type of data structure

manipulation. Consequently, it becomes feasible to extract

meaningful insights or interpret outcomes from HDC rep-

resentations down to the elementary level. To this end, we

compare bundling and binding from the perspective of se-

1



mantics to establish interpretability over HDC algorithms.

Most critically, we highlight the effect they have on the se-

mantic domain of HDC and the semantic qualities of the

representation. We omit permutation as it is similar to bind-

ing and is out of the scope of this paper.

The semantics of the HDC representation refers to how

much information a hypervector maintains about the rela-

tions and the identities of the atomic hypervectors it is built

upon. We define the semantic domain to be the domain in

which the similarity function δ is meaningful. We define

semantic quality as the accuracy of retrieving said content.

The semantic quality is directly influenced by semantic am-

biguity and semantic complexity, on which we elaborate be-

low.

First and foremost, without the HDC operators, the se-

mantic domain is the codebook (or union of all the code-

books). With sufficiently large hyperdimension, the code-

book entries are nearly orthogonal and hence distinguish-

able by the similarity function. The higher the hyperdimen-

sion, the less noise between the normalized similarity be-

tween dissimilar hypervectors. We describe how bundling

and binding extend this semantic domain.

Bundling and semantic ambiguity: Treating the bundling

of hypervectors as the representation of sets is reasonable

because the membership of an element in a set can be ap-

proximated via the similarity function. The domain of δ

where it is semantically meaningful is lifted from the set of

codebook entries to the collection of subsets of the code-

book entries. The notion of set cardinality can also be con-

ceived and is usually estimated from the length of the hy-

pervector. We can generalize the approach to multiset by

allowing weighted bundling, extending the domain to the

additive group generated by the codebook entries.

This “semantic lift” is not infinite, however. Since δ ap-

proximates the discrete metric, the error of every atomic

evaluation produces a noise term to the final result. In such

set membership evaluation, this noise aggregates propor-

tional to the size of the sets. We refer to this noise as the se-

mantic ambiguity of the representation, also referred to as

crosstalk noise [8], as it directly affects the ability to decode

and hence interpret the representation. With enough devia-

tion from the expected value, a semantic error occurs, where

a nonmember has a similarity with a set beyond the thresh-

old value or a member below. This implies that there is an

intrinsic bound to this semantic lift, and this bound is “soft”

in the sense that there is a trade-off between the height of

the bound and the quality of the semantics. Many work

has proposed estimation to this semantic lift in the form of

“memory capacity”. Some are characterized asymptotically

[1] while others are more exact [8].

Binding and semantic complexity: The binding of hyper-

vectors is considered a tuple because the resulting hyper-

vector is dissimilar to any of its components and ”unbind-

ing” one of the components from the hypervector reveals

the others. Consequently, the semantic domain extends to

any compositions of codebook entries.

This semantic quality of bound hypervectors faces some-

what of a different challenge compared to addition: while

multiplication does not increase the length of the hypervec-

tor when binding atom hypervectors, the decoding of hy-

pervectors is much more challenging because a similarity

check will indicate a match if and only if all components

match the given tuple. On the one hand, binding (at the

atomic level) does not contribute to the increase of seman-

tic ambiguity: because bound hypervectors are still bipo-

lar and dissimilar to other hypervectors, they contribute a

similar amount of noise as an atomic hypervector. On the

other hand, since decoding the bound hypervector relies on

finding the correct combination of atomic hypervectors and

verifying by similarity, the latter increases the search space

size. We refer to the size of the search space as the semantic

complexity of the representation. The semantic complexity

also directly affects the interpretability of the model. Even

though it does not directly contribute to the magnitude of

the noise in similarity as bundling does, it significantly en-

larges the search space. Due to the randomizing nature of

the hypervectors, it is then more likely that, in the presence

of noise, some combination of hypervectors becomes more

similar to the original.

1.2. Decomposition for Interpretable HDC

As a computing paradigm inspired by the principles of

high-dimensional mathematics and cognitive science, HDC

framework has been extended to perform various compu-

tational tasks, most prominently in machine learning and

cognitive computation. For learning tasks, the design of en-

coding, data structure, and schema serves as the foundation

for data and model representation. In the context of clas-

sification, an HDC model trained a class hypervector for

each class such that the similarity between a query and class

hypervectors determines mode prediction: the class hyper-

vector most similar to the query is the predicted class. For

cognitive processing, the HDC framework relies on HDC

operators and similarity functions to transform and retrieve

information about the complex objects represented by the

composite hypervectors. These practical applications in-

clude memory storage and retrieval, signal processing, and

data analysis, as well as pattern recognition, natural lan-

guage processing, and robotics [3, 5].

The semantic quality provides us with some insight into

how interpretable HDC can be. Although the decoding ac-

curacy of the compound hypervector is affected by both se-

mantic ambiguity and complexity, there are many solutions

to mitigate this issue. For example, increasing the hyper-

dimension can reduce the noise between elementary hyper-

vectors, subsequently improving the decoding accuracy. Al-



ternatively, one may use intermediate codebooks to provide

hierarchical decoding.

Practical applications of the HDC model face two chal-

lenges in decoding, one in accuracy and one in efficiency.

The accuracy challenge relates to the potential loss of pre-

cision or fidelity during the encoding process. More specif-

ically:

1. At the implementation level, during the encoding of in-

formation into high-dimensional vectors, noise or distor-

tions can be introduced due to imperfect measurement or

encoding processes, limitations of the hardware, or other

sources of interference. While HDC are well-known

for robust representation, decoding from distorted hyper-

vectors nonetheless affects the expected accuracy of the

model, if only to a small degree.

2. At the algorithmic level, the distributivity of binding

over bundling leads to potential ambiguity in represen-

tations; more complex data structures that leverage both

binding and bundling may cause confusion if not de-

signed carefully. This has been discussed in detail and

partly addressed in [6].

3. At the computational level, HDC representation in-

herently introduces small noises to the representation

of atomic concepts to effectively leverage the high-

dimensional space, resulting in a signal-to-noise ratio

determined directly by the dimensionality of the hyper-

vectors. The noise is carried over when performing HDC

computations and may aggregate over bundling. These

scalability issues are typically resolved by adding “inter-

mediate codebooks” that store composite hypervectors.

This allows the decoding to be hierarchical, effectively

enabling noise reduction in the process.

The decoding efficiency challenge, which we aim to

tackle, happens in the case of binding. Bundling allows the

hypervector to retain high similarity with its constituents, so

recovering individual components of a bundled hypervector

is simply set membership detection (it can also be extended

to a weighted set naturally). Permutation has an exhaustive

search algorithm that is linear with respect to the number of

maximum permutations allowed (or possible; for the circu-

lar shift it is the hyperdimension), so one may recover both

the position and identity of the hypervector by repeatedly

permuting and checking it against the codebook. Binding

does not preserve similarity and therefore requires a search

over all possible combinations of the atomic hypervectors.

Because binding creates dissimilar hypervectors, a bound

hypervector cannot be decoded directly by similarity check

against the codebook. The exhaustive way of decoding is to

compare it with all possible binding results. Consequently,

the search space scales exponentially with the level of bind-

ing and polynomially with the size of the codebook. There-

fore, it is much harder to find all the components of bound

hypervectors. We call this the HDC factorization problem.

This hard combinatorial search problem that resides at

the core of HDC decoding has brought significant limita-

tions to HDC models. As succinctly put by [2], previous

uses of VSAs have mostly avoided this issue by either re-

stricting the complexity of data structures or employing a

straightforward method of examining all conceivable com-

binations when required [7]. However, this has limited

the practical use of VSAs since there hasn’t been an effec-

tive solution for accessing elements within compound data

structures that contain multiple components. In the next

section, we formalize the HDC factorization problem and

discuss existing classical approaches and their limitations.

2. Resonator network

The state-of-the-art approach to solving the high-

dimensional factorization problem is the Resonator

network [2]. This method utilizes the principle of superpo-

sition to iteratively and approximately find the factorization.

Initially, each factor’s prediction is formed as the superpo-

sition of all entries in the codebook: ĉ
(0)
i = g(

⊕N

j=1 Ci,j)
where the superscript indicates the iteration step and g

represents the sign function, ensuring the hypervector

remains bipolar. At each iteration, the prediction for each

factor is updated based on the composite vector and the

predictions of other factors:

ĉ
(t+1)
i = g(CiC

T
i (c⊙ (

⊙

j ̸=i

ĉ
(t)
j )) (2)

Here, the hypervectors are column vectors and each code-

book C is hence a D×N matrix. The algorithm terminates

when the solution stabilizes, or when it has run the maxi-

mum number of iterations allowed.

Intuition: Due to the properties of the high dimensional

space, a thresholded superposition retains a relatively high

similarity to its components. The initial guess approxi-

mately contains all possible candidates for a factor. When

we bind all the initial guesses together, the resulting hyper-

vector contains all possible combinations of the factors, thus

enumerating all candidates for the factorization, in a much

lower resolution as constrained by the capacity of the hy-

pervector. Since bipolar hypervectors are binding inverses

to themselves, the term c ⊙ (
⊙

j ̸=i ĉ
(t)
j ) in Eq. (2) can be

interpreted as: for each factor i, we unbind the all other fac-

tors, each a superposition of the candidates, such that the re-

sult is the correct solution to the codebook i and a collection

of noise terms. Finally, the resonator network performs a

noise reduction operation CiC
T
i for the rest of Eq. (2). Mul-

tiplying with CT
i produces a vector of length N with the jth

entry measuring the similarity with the jth hypervector of

the codebook. Subsequently multiplying with Ci produces

a hypervector that is a weighted bundling of the codebook

entries. As a result, after the sign function, we again re-

ceive a bipolar hypervector that is the superposition of the



codebook entries, only that the coefficients for each entry

changed in the direction of the approximated similarity.

Advantages and Limitation: [4] demonstrated several pros

and cons of the resonator network methods compared to

optimization-based methods. Firstly, while optimization

methods assure convergence (typically to local minima) un-

der any initial condition, the resonator network does not of-

fer such a guarantee, particularly when the problem size ex-

ceeds the model’s parameter limits. Secondly, in terms of

handling problem sizes within its operational capacity, the

resonator network can, with a high degree of probability, ad-

dress problems significantly larger (by two orders of mag-

nitude) than those manageable by optimization-based meth-

ods. This capability is formally quantified and empirically

validated as “operational capacity”. Regarding computa-

tional efficiency, both methodologies necessitate a compa-

rable number of iterations for convergence when the prob-

lem size falls within their respective operational capacity.

However, due to its simpler and more parallelizable com-

putational processes, the resonator network boasts greater

speed. In essence, unlike optimization-based methods that

make no assumption of the properties of the codebooks, the

resonator network recognizes that they are generated from

i.i.d. distribution and hence leveraged HDC principles, as

suggested in the previous section.

Despite its empirical successes, the theoretical under-
standing of the resonator network’s capacity and behavior
remains incomplete. In fact, practical HDC factorization
still faces the fundamental limit of the problem size, and this
limit comes in two levels. First, the problem space scaled
poorly w.r.t. the codebook size and the number of factors
- a direct result of combinatorial complexity. Secondly, the
inherent and implicit requirement of “high-dimensionality”
of the vectors imposes further demand on the dimension of
the hyperspace. This is due to a demand for high signal-to-
noise ratios and is partly what gives HDC its nice properties
such as robustness. When it comes to decoding, however,
even in the absence of noise, the enforced high dimension-
ality limits the scalability of HDC. To overcome the prob-
lems of capacity and convergence and to improve upon effi-
ciency, we move to quantum computing, which both allows
a quadratic speed up over the linear search and bypasses the
high signal-to-noise ratio, as the quantum basis states are
strictly orthogonal.

References

[1] E Paxon Frady, Denis Kleyko, and Friedrich T Sommer. A

theory of sequence indexing and working memory in recur-

rent neural networks. Neural Computation, 30(6):1449–1513,

2018. 2

[2] E Paxon Frady, Spencer J Kent, Bruno A Olshausen, and

Friedrich T Sommer. Resonator networks, 1: an efficient so-

lution for factoring high-dimensional, distributed representa-

tions of data structures. Neural computation, 32(12):2311–

2331, 2020. 3

[3] Mohsen Imani, Deqian Kong, Abbas Rahimi, and Tajana

Rosing. Voicehd: Hyperdimensional computing for efficient

speech recognition. In International Conference on Rebooting

Computing (ICRC), pages 1–6. IEEE, 2017. 2

[4] Spencer J Kent, E Paxon Frady, Friedrich T Sommer, and

Bruno A Olshausen. Resonator networks, 2: Factorization

performance and capacity compared to optimization-based

methods. Neural computation, 32(12):2332–2388, 2020. 4

[5] Denis Kleyko, Evgeny Osipov, Daswin De Silva, Urban Wik-

lund, Valeriy Vyatkin, and Damminda Alahakoon. Distributed

representation of n-gram statistics for boosting self-organizing

maps with hyperdimensional computing. In Perspectives of

System Informatics: 12th International Andrei P. Ershov In-

formatics Conference, PSI 2019, Novosibirsk, Russia, July 2–

5, 2019, Revised Selected Papers 12, pages 64–79. Springer,

2019. 2

[6] Tony A Plate. Distributed representations and nested compo-

sitional structure. Citeseer, 1994. 3

[7] Tony A Plate. Analogy retrieval and processing with dis-

tributed vector representations. Expert systems, 17(1):29–40,

2000. 3

[8] Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing. A

theoretical perspective on hyperdimensional computing. Jour-

nal of Artificial Intelligence Research, 72:215–249, 2021. 2


	. More on Hyperdimensional Computing
	. Establishing HDC Semantic for Interpretability:
	. Decomposition for Interpretable HDC

	. Resonator network

