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Figure 1. Hand Ablation: We perform ablation on the grid ini-
tialization of the skinning weights and the choice of LPIPS loss
function. Clearly our approach is better in terms of visual appear-
ance.

Figure 2. Here in (a) we show how initializing MANO weights
without voxel grid allows the unstructured Gaussians to move er-
ratically. In (b), we show the affect on accumulated 2D contact
renderings with change in the number of Gaussians.

1. Ablation Study
1.1. MANUS-Hand

Initialization of Skinning Weights: We observe that the
choice of method used to initialize skinning weights signif-
icantly influences the performance of our hand model. As
demonstrated in Figure 2 (a), initializing skinning weights
directly onto Gaussians using a nearest neighbor approach,
as opposed to grid initialization, leads Gaussians to move
erratically and shift towards an unrelated bone. Conse-
quently, this misalignment results in artifacts, where skin-
ning weights are incorrectly allocated to the wrong bone,
causing the position to be associated with the incorrect
bone. The impact of this method of initialization is pre-
sented both quantitatively and qualitatively in Table 1 and
Figure 1.
Ablation on LPIPS loss: We observed that LPIPS loss im-
proves the quality of renderings and maintain consistency
across views. We also demonstrate that LPIPS loss func-
tion improves the overall visual quality of our hand model
qualitatively at Figure 1 and quantitatively at Table 1.
Alignment with image pixels: We now demonstrate the
pixel-alignment results of MANUS-hand and MANO in

Figure 3. We display a comparison of the pixel misalignment be-
tween projected Gaussians and the MANO mesh against a refer-
ence image.

Figure 3. Due to inherent design and photo-metric losses,
our hand representation is pixel-aligned to reference im-
age, resulting in reduced alignment as compared to that of
MANO.
Benchmarking MANUS Grasp scenes: We also evaluate
our MANUS Hand and Object method in Table 2 using the
data included in the MANUS Grasp dataset. The well-lit
scenes and the absence of harsh shadows in our dataset lead
to improved evaluation metrics when compared with those
of the InterHand2.6M dataset.

1.2. MANUS Grasp Capture

Affect of the number of Gaussians in contact map ren-
dering: We show in Figure 2(b) that the quality of accu-
mulated 2D contact maps deteriorates when the number of
Gaussians is reduced. Therefore, in our experiments, we
make sure to densely initialize Gaussians for both objects
and hands.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Test time (s) ↓
w/o grid 26.108 0.987 0.0729 0.0082
w/o lpips 25.92 0.986 0.074 0.043

Ours 26.328 0.9872 0.0688 0.043

Table 1. Ablation on weight initialization approach and choice
of LPIPS loss. Our design approach improve all visual quality
metrics.

2. Implementation Details
Our method was implemented in Python using the PyTorch
Lightning [4] framework. All experiments were conducted
using a single Nvidia RTX3090 GPU with gradient accu-
mulation for 4 iterations. The weights of the different loss
function terms - α, β, γ and δ - were experimentally deter-
mined and set at values of 0.7, 0.1, 0.1, and 0.1, respectively.



Categories PSNR ↑ SSIM ↑ LPIPS ↓
Mugs 43.08 0.999 0.002

Bottles 38.17 0.997 0.008
Fruits 39.57 0.998 0.005

Utensils 38.25 0.994 0.009
Misc 38.79 0.995 0.008

Colored 42.38 0.999 0.004
Bags 38.44 0.994 0.011
Jars 40.66 0.999 0.005

Books 36.17 0.998 0.015
Tech 38.81 0.995 0.007

Hand1 28.34 0.995 0.031
Hand2 29.94 0.998 0.029
Hand3 29.71 0.997 0.027

Table 2. Here we benchmark MANUS-hand and object method on
MANUS Grasp scenes.

In all our experiments, we chose a grid size of 256x160x142
around the canonical hand skeleton for storing the skinning
weights initialized from MANO [12]. MANUS-Hand is ini-
tialized with 30K Gaussians per bone, amounting to 900K
Gaussians in total. After training, this number is pruned and
filtered down to approximately 300K.

3. MANUS Dataset Details

Bone length estimation: We first use the [5] to acquire
2D keypoints for every frame and view. These keypoints
are then triangulated into 3D keypoints using the [1]. With
these triangulated keypoints, we determine the bone lengths
for each subject. Specifically, we average the 3D keypoints
across all grasp sequences and then adjust the length of the
skeleton accordingly.

Inverse Kinematics: To obtain the joint angles of the hand
and its global orientation we use an optimization-based ap-
proach inspired by [13]. Specifically, we treat the joint
angles, global rotation and global translation as optimiza-
tion parameters Θ. We then perform a forward kinemat-
ics (Fk(Θ)) pass which takes the joint angles as input and
outputs 3D joint locations. As the forward pass is differen-
tiable, we apply gradient descent to obtain the optimal pa-
rameters that explain the given 3D joint positions. We min-
imize the L2 loss between predicted and target keypoints:

Lkyp = ||Fk(Θ)− x||2 (1)

where x are the 3D joint locations predicted by AlphaPose
[5]. We also impose anatomical constraints (See Figure 6)
and joint angle limits by applying a hinge loss as limit loss

Llim as follows:

Llim =

|Θ|∑
i=1

((max(0, ||Θi − lih||2) + max(0, ||lil −Θi||2))

(2)
where ll and lh are the lower and upper limits on joint an-
gles, respectively. The final loss function is given by:

L = Lkyp + λLlim (3)

We use Adam [8] as our choice of optimizer with a learning
of 0.001 and set the value of λ to be 1. We also initialize the
current frame based upon previous frame, this helps in faster
convergence and helps in maintaining temporal consistency.
Once we get the joint angles, we apply one euro filter [2] to
the joint angles to smoothen any high-frequency jitter in the
sequence. We show illustration of this process in Figure 5.
Segmentation: For every segmentation task, we employ
a combined approach utilizing InstantNGP [10] and SAM
[9]. Initially, the scene is segmented using the text-based
SAM technique. Following this, we obtain a segmentation
mask that maintains consistency across multiple views us-
ing InstantNGP. If the segmentation masks are found to be
inadequate due to inaccurate predictions from the text-based
SAM, the process is repeated until satisfactory results are
achieved.
Ground Truth Contacts: In Figure 4, we illustrate the
methodology used to gather ground truth contact data for
our evaluation sequences. Initially, the object is coated with
a layer of bright, wet paint. Following this, the object is
grasped, resulting in the transfer of paint residue to the
hand. After the grasp is finalized, we document the pattern
of contact residue left on the hand. To obtain the required
viewpoints, we train [10] in the multi-view images and then
select 10 distinct views for evaluation. We repeat this pro-
cess for 15 different evaluation sequences for each subject.
Grip Aperture: The grip aperture [3] refers to the distance
between the thumb and fingers when grasping or holding an
object. It’s an important concept in fields like ergonomics,
rehabilitation, and robotics. Here in Figure 7, we plot the
change of grip aperture with change in timestep for our
dataset.

4. MANO and HARP evaluation
Pose and Shape Estimation: We begin by estimating the
shape and scale parameters of the MANO model for each
subject. First, we obtain the mesh for every time-step by
training [10] on multi-view images. Next, we refine the
mesh through the use of MeshLab and Blender software
to achieve a cleaned version. We employ an optimization
framework akin to that used in [6], focusing on optimizing
all MANO parameters, including angle, translation, shape,
and scale for the first timestep. This optimization incorpo-
rates both keypoint loss (1) and point-to-surface loss [11]



Figure 4. Here, we show the approach we used to obtain the ground truth contacts for the evaluation sequences. On the far right, we display
all 10 views of one evaluation sequence for the quantitative assessment of grasp capture.

Figure 5. The left figure shows the backprojected 3D keypoints
predicted by AlphaPose [5]. The right figure shows the fitted hand
skeleton using inverse kinematics.

Figure 6. Figure showing the degrees of freedom of rotation for
each of the joint.

with the clean mesh. For subsequent sequences , we keep
the shape and scale parameters unchanged, focusing solely

Figure 7. Variation of grip aperture with change in timestep while
grasping.

on optimizing angles and translations through keypoint loss.
To enhance the speed of convergence, we use the optimized
parameters from the previous step as the starting point for
new parameters.

To get better geometry than MANO we extend HARP
[7] from monocular video setup to multi-view video setup.
We start with already optimized MANO model (as men-
tioned above) and then optimize for the local displacement
of the hand shape. We leverage the differentiable rasterizer,
to optimize the HARP model based on the losses mentioned
in [7].
Evaluation Setup: Please note that, we can’t directly ren-
der contact maps for MANO and HARP in the same way as
MANUS, which employs a Gaussian-based differentiable
rasterizer. To obtain contact maps for MANO and HARP,
we initially allocate contact values to each vertex, followed
by utilizing Blender’s emission renderer to render the con-
tact mask. For fair comparison, we increase the resolution
of MANO and HARP vertices from 778 to 49,000.
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