
[Supplementary Material]
XFeat: Accelerated Features for Lightweight Image Matching

Guilherme Potje1 Felipe Cadar1,2 André Araujo3

Renato Martins2,4 Erickson R. Nascimento1,5

1Universidade Federal de Minas Gerais 2Université de Bourgogne, ICB UMR 6303 CNRS
3Google Research 4Université de Lorraine, LORIA, Inria 5Microsoft

{guipotje,cadar,erickson}@dcc.ufmg.br, renato.martins@u-bourgogne.fr, andrearaujo@google.com

In this supplementary material accompanying the main
paper, we present a more detailed overview of the archi-
tecture of our proposed CNN backbone and the practices
employed in the training process. Moreover, we provide
an expanded set of qualitative results and extended discus-
sion, providing additional contextualization with the current
state-of-the-art methods. Code and weights are available at
verlab.dcc.ufmg.br/descriptors/xfeat cvpr24.

1. Backbone details
To maintain the backbone’s structural simplicity, we employ
a primary unit termed the basic layer. This unit is structured
with a 2D convolution with square kernel sizes k = 1 or
k = 3, complemented by ReLU activation and Batch Nor-
malization. A stride of 2 in the convolution is applied for
halving the spatial resolution as needed. The network’s ar-
chitecture is modular, comprising several basic layers as a
basic block, as depicted in Fig. 1. Each block consists of
two or three basic layers. The backbone of our network
comprises six of these basic blocks, designed to halve the
spatial resolution in each step while progressively augment-
ing the depth using the approach detailed in Sec. 3.1 of the
main paper. The first basic layer on each block performs the
spatial downsampling. Two additional basic blocks, in the
end, are employed to perform the fusion of multi-resolution
features and reliability map prediction, respectively. Pre-
liminary experiments revealed that adding a single skip con-
nection to the model as shown in Fig. 1 slightly increased
performance, which has led to its incorporation in the final
backbone design.

2. Training description
We trained the network on a mix of Megadepth [5] scenes
using the training split provided by [8] and syntheti-
cally warped pairs using raw images (without labels) from
COCO [6] in the proportion of 6 : 4 respectively. All image

In:
(H, W, 1)

Out:
(H, W, 4)

In:
(H, W, 4)

Out:
(H/2, W/2, 8)

In:
(H/2, W/2, 8)

Out:
(H/4, W/4, 24)

In:
(H/4, W/4, 24)

Out:
(H/8, W/8, 64)

In:
(H/8, W/8, 64)

Out:
(H/16, W/16, 64)

In:
(H/16, W/16, 64)

Out:
(H/32, W/32, 128)

+

upsample

1x1 conv +
upsample

Out:
(H/8, W/8, 64)

In:
(H/8, W/8, 64)

Descriptors

In:
(H/8, W/8, 64)

Out:
(H/8, W/8)

Reliability Map

Legend

Input Image:
H x W x 1

+ Element-wise
Sum

3-Layer Basic Block

2-Layer Basic Block

Descriptor Head

Skip Connection
(AvgPool 4x4 + 1x1 conv)

Figure 1. Detailed descriptor backbone. Our backbone is com-
prised of 23 convolutional layers, following the downsampling
strategy described in Sec. 3.1 of the main paper. Our network
is deeper compared to ALIKE [10] and SuperPoint [2] backbones
in terms of layers, but due to the efficient downsampling strategy
adopted, our network’s inference is much faster.

pairs were resized to (W = 800, H = 600), and ground-
truth correspondences were scaled accordingly. Our abla-
tions show that hybrid training significantly improves gen-
eralization for small CNNs, as observed in high-capacity
models [7]. The network was trained on batches of 10 im-
age pairs using the Adam optimizer [4] with an initial learn-
ing rate of 3×10−4, applying an exponential decay of 0.5 at
every 30,000 gradient updates. Convergence is attained af-
ter 160,000 iterations, within 36 hours on a single NVIDIA
RTX 4090 GPU, consuming 6.5 GB of VRAM in total, con-
sidering both training and synthetic warps done on the fly
on GPU. Disk I/O is the predominant speed bottleneck due
to the overhead of loading images and depth maps from
the Megadepth dataset in their original resolution, which

1

https://verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24

XFeat-joint XFeat*-joint XFeat XFeat*
Method

0
50

100
150
200
250
300
350
400
450

Ti
m

e
(m

s)
Steps
detection
description
det. & descr.
matching
refinement

Figure 2. Detailed timing analysis on i7-6700K CPU. Required time by each step of our ablated methods.

can be easily solved with a more careful data preparation
scheme. The low memory usage of our method enables
training on entry-level hardware, facilitating the fine-tuning
or full training of our network for specific tasks and scene
types.

3. Detailed timing analysis

This section reports a detailed timing analysis of our pro-
posed solutions in sparse and semi-dense matching settings.
Regarding XFeat∗’s match refinement step, we show in
Fig. 2 that the match refinement cost is negligible. More
notably, even with the refinement step included, XFeat∗

achieves a similar matching time compared to XFeat with
the same number of keypoints because refinement is per-
formed after the nearest neighbor search. Additionally, we
present the extraction running times for the most efficient
methods available on an Orange Pi Zero 3 equipped with a
Cortex-A53 ARM processor. This device stands out as one
of the smallest and most affordable consumer-grade em-
bedded computers ($28). Considering its limited process-
ing power, we adjusted the input resolution to 480 × 360
for all methods and used their standard PyTorch imple-
mentation without any deployment optimization. Our find-
ings show that XFeat operates at an average of 1.8 FPS,
SuperPoint at 0.16 FPS, and ALIKE at 0.58 FPS, respec-
tively. This experiment shows that XFeat is the only learned
method capable of running over one FPS on a highly con-
strained embedded device that is not optimized for neural
network inference.

4. Megadepth-1500 qualitative results

Fig. 3 shows more qualitative results of our two proposed
approaches compared to the baseline methods used in the
main paper. For more challenging cases such as strong
viewpoint and illumination changes, XFeat and XFeat∗ ex-
hibit exceptional robustness even compared to DISK [9]
– the largest CNN architecture regarding floating point
operations. We hypothesize that this robustness is at-

tributed to our network’s large receptive field and depth
compared to shallower models such as SuperPoint, ALIKE,
and SiLK [3], demonstrating the effectiveness of our feath-
erweight backbone in the compute-accuracy trade-off.

5. ScanNet-1500 extended discussion

Recalling the results obtained in Tab. 2 of the main pa-
per, XFeat and XFeat∗ surpass both fast and standard lo-
cal feature extractors in pose accuracy while being signif-
icantly faster for indoor relative pose estimation. DISK
and ALIKE, which were trained in the same Megadepth
scenes as XFeat, display signs of overfitting in landmark
imagery: they perform exceptionally well in strict thresh-
olds (AUC@5◦) on Megadepth-1500 test set, but their rel-
ative performance are similar or worse in tasks such as ho-
mography estimation and visual localization compared to
XFeat and SuperPoint, as one can observe in Tab. 3 and
Tab. 4 of the main paper.

We conjecture that XFeat produces less biased local de-
scriptors due to our hybrid training with synthetic warps
on COCO. SuperPoint also demonstrate increased gener-
alization accross different downstream tasks and datasets
due to its inherent self-supervised training strategy on syn-
thetic warps. Hybrid training can encourage local feature
representations to focus less on distinctive textures often
present in landmark outdoor imagery that could bias the
CNN training. In addition, the large receptive field of our
network, as well as its increased layer depth compared to
the other approaches, helps XFeat in indoor imagery (which
often lacks distinctiveness at the local level), resulting in
more consistent matches compared to DISK and ALIKE
in ScanNet-1500, even though XFeat and the competitors
were not trained on ScanNet data.

6. Comparison with learned matchers

Since XFeat∗ uses paired inputs when performing the re-
finement step, we provide additional comparisons of XFeat∗

(semi-dense matching) with popular learned matchers such

DISK*DISK*ZippyPoint

SiLK*

XFeat* XFeat*XFeat

ZippyPoint

XFeat

ORB ORB

SuperPoint SuperPoint

ALIKE ALIKE

SiLK*

SuperPoint SuperPoint

ALIKE ALIKE

(a) sparse matching with XFeat (b) semi-dense matching with XFeat*

Figure 3. Additional qualitative results on Megadepth-1500 [5, 8] landmark dataset. XFeat and XFeat∗ are robust in demanding
scenarios with significant viewpoint and illumination variations, outperforming even the more computationally intensive DISK model in
semi-dense matching with 10,000 local features at a striking 16× speedup. In a sparse setting with 4,096 keypoints, our method, which
is many times faster than ALIKE (5×) and SuperPoint (9×), demonstrates more robustness to wide baseline transformations due to the
effective re-formulation of XFeat’s backbone CNN.

DISK*

XFeat*

XFeat

SuperPoint

ALIKE

DISK*

XFeat*

XFeat

SuperPoint

ALIKE

DISK*

XFeat*

XFeat

SuperPoint

ALIKE

DISK*

XFeat*

XFeat

SuperPoint

ALIKE

Figure 4. Additional qualitative results on ScanNet-1500 [1, 8] indoor dataset. Our proposed approaches consistently outperform
state-of-the-art methods such as DISK and ALIKE in indoor imagery, both in terms of camera pose and inlier ratio. Notice that SuperPoint
also often outperforms DISK and ALIKE. Sec. 5 provides a detailed discussion on the reasons behind our method’s superiority.

as LoFTR [8] and LightGlue [7], and coarse-to-fine strate-
gies as Patch2Pix [11], to elucidate the key differences. The
results for these new approaches are shown in Tab. 1. Al-
though XFeat∗ needs paired inputs for refinement, it funda-

mentally differs in its methodology from learned matchers,
being only comparable to Patch2Pix, as we rely on tradi-
tional nearest neighbor search for matching, followed by a
lightweight refinement of matches, incurring a negligible

Table 1. Matchers comparison on Megadepth-1500. Inference speed in pairs per second (PPS) @ 1,200 px. (i7-6700K CPU).

Method Type AUC@5◦ @10◦ @20◦ Acc@10◦ MIR #inliers PPS

LoFTR learned matcher 68.3 80.0 88.0 93.9 0.93 3009 0.06
LightGlue learned matcher 61.4 75.0 84.8 91.8 0.92 475 0.31
Patch2Pix coarse-fine 47.8 61.0 71.0 77.8 0.59 536 0.05
XFeat∗ coarse-fine 50.2 65.4 77.1 85.1 0.74 1885 1.33

computational load (see Fig. 2). The requirement for paired
inputs does not change the usual pipeline for SfM and visual
localization tasks because XFeat∗’s features can be stored
for each image independently, as usually done for sparse
settings. For instance, high-resolution feature maps are not
required, unlike LoFTR, to produce refined matches.

Our techniques are, in fact, complementary to learned
matchers; for example, LightGlue can be trained using both
XFeat and XFeat∗ features. Learned matchers are more
data hungry and much more expensive to train, e.g., LoFTR
uses 64 GPUs for 24 hours to be trained. XFeat∗, for
its turn, can be trained on a single 8 GB GPU. Further-
more, XFeat∗ offers up to 22× speedup over existing semi-
dense solutions as shown in Tab. 1 and surpasses coarse-
to-fine approaches such as Patch2Pix in accuracy, while be-
ing faster and delivering many more matches than sparse
learned matchers as LightGlue. Naturally, XFeat, as a local
descriptor, offers limited robustness to aggressive viewpoint
changes and highly ambiguous image pairs compared to
transformer-based feature matchers. Coupling a lightweight
transformer such as LightGlue or LoFTR’s linear trans-
former with XFeat’s local features can open new directions
in scalable, high-performance image matching tasks, facil-
itating advancements in both efficiency and accuracy that
are pivotal for pushing the boundaries in visual navigation,
augmented reality, and real-time visual SLAM.

References
[1] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, pages 5828–5839, 2017. 3

[2] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In CVPRW, pages 224–236, 2018. 1

[3] Pierre Gleize, Weiyao Wang, and Matt Feiszli. Silk: Simple
learned keypoints. In ICCV, pages 22499–22508, 2023. 2

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 1

[5] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In CVPR, pages
2041–2050, 2018. 1, 3

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755. Springer, 2014. 1

[7] Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Polle-
feys. LightGlue: Local Feature Matching at Light Speed. In
ICCV, 2023. 1, 3

[8] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and
Xiaowei Zhou. Loftr: Detector-free local feature matching
with transformers. In CVPR, pages 8922–8931, 2021. 1, 3

[9] Michał Tyszkiewicz, Pascal Fua, and Eduard Trulls. Disk:
Learning local features with policy gradient. NeurIPS, 33:
14254–14265, 2020. 2

[10] Xiaoming Zhao, Xingming Wu, Jinyu Miao, Weihai Chen,
Peter CY Chen, and Zhengguo Li. Alike: Accurate and
lightweight keypoint detection and descriptor extraction.
IEEE TMM, 2022. 1

[11] Qunjie Zhou, Torsten Sattler, and Laura Leal-Taixe.
Patch2pix: Epipolar-guided pixel-level correspondences. In
CVPR, pages 4669–4678, 2021. 3

	. Backbone details
	. Training description
	. Detailed timing analysis
	. Megadepth-1500 qualitative results
	. ScanNet-1500 extended discussion
	. Comparison with learned matchers

