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1. Uncertainty-driven Causal Intervention
As mentioned in the paper, the proposed uncertainty-driven
causal intervention method is designed to generate multiple
distributions to simulate potential shifts during inference time.
Here, we summarize the steps of the proposed method as de-
scribed in Algorithm 1.

In this method, we first calculate uncertain feature statistics,
mean and standard deviation, through the embedding of spuri-
ous patterns within a mini-batch. This process captures their
basic statistical properties (a). We then proceed to estimate
the uncertainty of these statistics to set the stage for simulat-
ing potential shifts that may arise due to perturbations during
inference time (b).

We continue by synthesizing new feature statistics by ran-
dom sampling from Gaussian distributions. These distribu-
tions are parameterized by the original statistics and their es-
timated uncertainties, introducing a probabilistic component
into the latent space and facilitating the exploration of various
distribution shift scenarios (c). Finally, to form the interven-
tion set, we adjust the original embeddings using the newly
intervened statistics (d).

Note that the proposed intervention procedure benefits from
a differentiable sampling operation as in [4], making the mod-
ule trainable to better simulate potential distribution shifts.

2. Relative Temporal Encoding
As discussed in the paper, we use relative temporal encoding as
in [2] to model the temporal dynamics in the DyHIN. This ap-
proach, inspired by positional encoding in Transformer mod-
els [8, 12], encodes time stamps into a sequence of sinusoidal
functions. The key advantage of this method is its ability to
capture the continuity and differentiability of time, essential
for gradient-based optimization in GNNs.

Here, given a source node u and a target node v, along with
their corresponding timestamps t(u) and t(v), we denote the
relative time gap ∆tv,u = t(v)− t(u) as an index to get a rela-
tive temporal encoding R(∆tv,u). Then, a fixed set of sinusoid
functions as the basis is used, followed by a learnable transfor-
mation layer ϕ to find the relative temporal encoding R. As
shown below, for even indices 2i and odd indices 2i + 1 sine
and cosine functions are used,
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R(∆tv,u) = ϕ (Base (∆tv,u))

(1)

where d denotes the representation dimension. We use a 1-

Algorithm 1: Causal Uncertainty-driven Intervention
Input : Embedding of spurious patterns ZS (referred

to as Z), intervention set size nI

Output : Intervention set I
1 a. Calculate uncertain feature statistics µ(Z), σ2(Z)
2 b. Uncertainty estimation on the statistics
3 Σ2

µ(Z) =
1
b

∑b
j=1 (µ(Z)− Ej [µ(Z)])

2

4 Σ2
σ(Z) =

1
b

∑b
j=1 (σ(Z)− Ej [σ(Z)])

2

// Create intervention set

5 I = [ ]
6 for i = 0 to nI − 1 do
7 c. Intervene feature statistics by sampling from the
8 given Gaussian distributions
9 βi ∼ N (0,1), γi ∼ N (0,1)

10 µ(Z)∗i = µ(Z) + βiΣµ(Z)
11 σ(Z)∗i = σ(Z) + γiΣσ(Z)
12 d. Intervene embeddings of spurious patterns
13 Ii = σ(Z)∗i ×

Z−µ(Z)
σ(Z) + µ(Z)∗i

14 I ← Ii
15 end
16 return Intervention set I

Table 1. Comparison of training time for each batch on the Argoverse
dataset using different variations of the proposed method.

Model b-FDE6 minADE6 minFDE6 MR6 Training-time (ms)
Baseline 2.07 0.93 1.57 0.21 183
Baseline+Dis 2.03 0.88 1.48 0.20 188
CaDeT 1.87 0.71 1.22 0.16 201

layer MLP as the transformation layer ϕ (refer to [2] for more
details). Building on this approach, we concatenate the relative
temporal encoding with the source node features, as outlined in
Eq. 4 in the paper. This allows the GNN to incorporate tempo-
ral information when determining the importance or relevance
of different nodes and their connections at various time steps.

3. CaDeT as a Plugging and its Training Cost
One advantage of the proposed method is that it can be in-
corporated in many trajectory prediction models as a plug-in.
More specifically, the causal disentanglement can be used to
separate the targeted representation into disjoint sets, including
causal and spurious, and therefore utilize the proposed inter-
vention combined with the invariance objective optimization
to enable the prediction model to focus on causal factors, thus
minimizing the negative effect of spurious correlations.

Adding a plug-in module to the model can add to the com-
putational complexity. In what follows, we would examine the



Table 2. Quantitative results on the Waymo motion forecasting leaderboard. The ”†” indicates an ensemble version. The ”∗” refers to predicting
more futures than required. For each metric, the best result is in bold and the second best result is underlined.

All agents Vehicle
Method Reference mAP minADE minFDE MR mAP minADE minFDE MR
HDGT [3] TPAMI 2023 0.283 0.570 1.143 0.144 0.324 0.668 1.347 0.140
SceneTransformer [6] ICLR 2022 0.279 0.612 1.212 0.156 0.327 0.709 1.412 0.148
MTR∗ [9] NeurIPS 2022 0.413 0.605 1.221 0.135 0.449 0.764 1.526 0.151
MTR++∗ [10] Arxiv 2023 0.433 0.590 1.194 0.130 0.487 0.718 1.432 0.137
MultiPath++∗ [11] ICRA 2022 0.409 0.556 1.158 0.134 0.463 0.650 1.355 0.130
WayFormer†∗ [5] ICRA 2023 0.419 0.545 1.128 0.123 0.466 0.639 1.321 0.117
MTR++†∗ [10] Arxiv 2023 0.463 0.558 1.117 0.112 0.514 0.668 1.317 0.114
MotionLM†∗ [7] ICCV 2023 0.436 0.551 1.120 0.106 0.478 0.664 1.353 0.107
CaDeT (Ours) - 0.390 0.545 1.136 0.140 0.449 0.651 1.310 0.132

computational overhead of our approach.
We model the representations based on spatiotemporal pat-

terns. This design choice is motivated by the fact that causal
factors in driving scenes occur simultaneously through spatial
and temporal relations. As a result, we leverage a GNN as
our predictor to encode scene representations. In this regard,
we compare our training cost with that of a standalone GNN.
We report our training time per batch across different varia-
tions of the model, including baseline (a standalone GNN),
baseline+Dis (the GNN equipped with disentangled attention
block), and CaDeT (our full model). All the experiments are
conducted on an NVIDIA Tesla V100.

As shown in in Table 1, our disentangled attention block
adds a training overhead as low as 2.7% and the proposed inter-
vention coupled with the invariance objective termed CaDeT,
imposes less that 10% overhead on the training. However,
by introducing such a small overhead, we achieve significant
improvement on all metrics. Particularly, baseline+Dis and
CaDeT improve upon the baseline model on minFDE metric
by 5.73%(1.57 → 1.48) and 22.29%(1.57 → 1.22), respec-
tively. It is also worth noting that the overheads of the proposed
intervention and the invariance optimization are only present
during training stage, leaving only the overhead of the disen-
tangled attention block during inference.

4. Comparison to State-of-the-art

We further evaluate our method against state-of-the-art models
on the WOMD dataset, as shown in Table 2. We present the
prediction results averaged over all agents and vehicles which
we apply our interventions to. The models are categorized
based on their additional processing overheads, including the
models that make a large number of predictions by, e.g. over-
sampling, (indicated by ”∗”) and the models that consists of
the ensemble of several models (indicated by ”†”).

According to Table 2, as expected, the ensemble models
generally outperform single models across most metrics, high-
lighting the effectiveness of ensemble techniques in enhancing
prediction accuracy. However, aggregating several models can
significantly increase complexity, making them less practical
for real-world applications. Compared to single models, which
is our case, despite focusing on improving robustness and gen-

eralizability against potential perturbations, our model’s per-
formance is comparable to the best models, and in some cases
surpasses them on some metrics.

In vehicle prediction, our model, which has ∼ 7.8M pa-
rameters, performs better compared to single models without
oversampling, namely HDGT (∼ 12M) and SceneTransformer
(∼ 15M) across all metrics. Compared to other single mod-
els, our model is at very close second to Multipath++ on mi-
nADE and MR, and outperforms heavily parameterized MTR
(∼ 65M) on all metrics (by 14.79%(0.764 → 0.651) and
14.15%(1.526→ 1.310)) and its variation MTR++ (∼ 125M)
on most metrics by up to 9%. Lastly, on minFDE, our model
achieves the best performance overall, even in comparison to
ensemble approaches. These results further confirm that our
method is capable of accurately predicting behaviors, as repre-
sented in the final trajectory points. On the all agents category,
as presented in the table, our method achieves overall second
best performance on two metrics, while surpassing single mod-
els with no oversampling on most metrics and perform by par
with others.

5. DRL in other domains.
DRL is more of a concept than a fixed method, focusing on
learning data representations where individual factors or fea-
tures are separated or disentangled. The key to DRL is how
these representations are modeled and the underlying intu-
ition of disentanglement, which shapes the objective function.
Therefore, the design choices in DRL are tailored to the ap-
plications. In our work, inspired by the causal relationships in
variable driving scenarios, we aim to disentangle causal from
spurious patterns that result from vehicle interactions through
time. Consequently, we defined our objective based on causal
invariance theory. The closest work in other domains is [1],
proposing a causal framework for representation learning that
addresses disentanglement and the ability to withstand domain
shifts.
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