
Technical Appendix of “1-Lipschitz Layers Compared: Memory, Speed, and
Certifiable Robustness”

A. Spectral norm and orthogonalization
A lot of recently proposed methods do rely on a way of parameterizing orthogonal matrices or parameterizing matrices with
bounded spectral norm. We present methods that are frequently used below:

Bjorck & Bowie [5] introduced an iterative algorithm that finds the closest orthogonal matrix to the given input matrix. In
the commonly used form, this is achieved by computing a sequence of matrices using

Ak+1 = Ak

(
I +

1

2
Qk

)
, for Qk = I −A⊤

k Ak (9)

where A0 = A, is the input matrix. The algorithm is usually truncated after a fixed number of steps, during training often 3
iterations are enough, and for inference more (e.g. 15) iterations are used to ensure a good approximation. Since the algorithm
is differentiable, it can be applied to construct 1-Lipschitz networks as proposed initially in [2] or also as an auxiliary method
for more complex strategies [27].

Power Method The power method was used in [32], [24] and [31] in order to bound the spectral norm of matrices.
It starts with a random initialized vector u0, and iteratively applies the following:

vk+1 =
W⊤uk

∥W⊤uk∥2
, uk+1 =

Wvk+1

∥Wvk+1∥2
. (10)

Then the sequence σk converges to the spectral norm of W , for σk given by

σk = u⊤
k Wvk. (11)

This procedure allows us to obtain the spectral norm of matrices, but it can also be efficiently extended to find the spectral
norm of the Jacobian of convolutional layers. This was done for example by [13, 24], using the fact that the transpose of
a convolution operation (required to calculate Equation (10)) is a convolution as well, with a kernel that can be constructed
from the original one by transposing the channel dimensions and flipping the spatial dimensions of the kernel.

When the power method is used on a parameter matrix of a layer, we can make it even more efficient with a simple trick.
We usually expect the parameter matrix to change only slightly during each training step, so we can store the result uk during
each training step, and start the power method with this vector as u0 during the following training step. With this trick it is
enough to do a single iteration of the power method at each training step. The power method is usually not differentiated
through.

Fantasic Four proposed, in [35], allows upper bounding the Lipschitz constant of a convolution. The given bound is
generally not tight, so using the method directly does not give good results. Nevertheless, since various methods require a
way of bounding the spectral norm to have convergence guarantees, Fantastic Four is often used.

B. Algorithms omitted in the main paper
Observe that the strategies presented in [9, 19, 25, 28, 32, 42, 47] have intentionally not been compared for different reasons.
In the works presented in [9, 28], the Lipschitz constraint was solely used during training and no guarantees were provided
that the resulting layers are 1-Lipschitz. The method proposed in [32] has been extended by Fantastic 4 [35] and, indeed,
can only be used as an auxiliary method to upper-bound the Lispchitz constant. The method proposed in [25] only works for
linear layers and can be thought of as a special case of SOC (described in Section 2). We will give detailed reasons for the
other methods below.



ONI The method ONI [19] proposed the orthogonalization used in LOT. They parameterize orthogonal matrices as
(V V ⊤)−

1
2V , and calculate the inverse square root using Newton’s iterations. They use this methods to define 1-Lipschitz

linear layers. However, the extension to convolutions only uses a simple unrolling, and does not provide a tight bound in
general. Therefore, we did not include the method in the paper.

ECO Explicitly constructed orthogonal (ECO) convolutions [47] also do use properties of the Fourier domain in order
to parameterize a convolution. However, they do not actually calculate the convolution in the Fourier domain, but instead
parameterize a layer in the Fourier domain, and then use an inverse Fourier transformation to obtain a kernel from this
parameterization. We noticed, however, that the implementation provided by the authors does not produce 1-Lipschitz layers
(at least with our architecture), as can be seen in Figure 5. There, we report the batch activation variance (defined in
Appendix F) as well as the spectral norm of each layer. The batch activation variance should be non-increasing for 1-
Lipschitz layers (also see Appendix F), however, for ECO this is not the case. Also, power iteration shows that the Lipschitz
constant of individual layers is not 1. Therefore we do not report this method in the main paper.

0 10 20 30 40 50 60
Layer Index

21
22
23
24
25
26
27
28

Ac
tiv

at
io

n 
Va

ria
nc

e

Activation Variances

0 10 20 30 40 50 60 70
Layer Index

20212223242526272829210211212213214

Up
pe

r b
ou

nd

Cumulative Lipschitz Constant

Figure 5. Left: Variance of a validation batch over the batch dimension. For 1-Lipschitz layers, this property should be non-increasing, as
proven in Appendix F. Right: Upper bound on the Lipschitz Constant applying the power method to every linear layer, and multiplying
the results. Plot for ECO on CIFAR-10, with model S.

Sandwich The authors of [42] introduced the Sandwich layer. It considers a layer of the form

l(x) =
√
2ATΨReLU

(√
2Ψ−1Bx+ b

)
, (12)

for σ typically the ReLU activation. The authors propose a (simultaneous) parameterization of A and B, based on the Cayley
Transform, that guarantees the whole layer to be 1-Lipschitz. They also extend the idea to convolutions. However, for this
they require to apply two Fourier transformations as well as two inverse ones. During the training of the models within
the Sandwich layers, a severe vanishing gradient phenomena happens. We summarize the Frobenious norm of the gradient,
obtained by inspecting the inner blocks during the training, in Table 3. For this reason we did not report the results in the
main paper.

C. Computation Complexity and Memory Requirement
In this section we give some intuition of the values in Table 1. Recall that we consider a layer with input size s × s × c,
and kernel size k × k, batch size b, and (for some layers) we will denote the number of inner iterations by t. We also use
C = bs2c2k2 and M = bs2c and P = c2k2.

AOL: In order to compute the rescaling matrix for AOL, we need to convolve the kernel with itself. This operation has
complexity O(c3k4). It outputs a tensor of size c× c× (2k − 1)× (2k − 1), so in total we require memory of about 5P for
the parameter as well as the transformation.

BCOP: For BCOP we only require a single convolution as long as we know the kernel. However, we do require a lot of
computation to create the kernel for this convolution. In particular, we require 2k−1 matrix orthogonalizations (usually done
with Bjorck & Bowie), as well as O(k3) matrix multiplications for building up the kernel. These require about c3kt+ c3k3

MACS as well as c2kt+ c2k3 memory.



Cayley: Cayley Convolutions make use of the fact that circular padded convolutions are vector-matrix products in the
Fourier domain. Applying the fast Fourier transform to inputs and weights has complexity of O(bcs2 log(s2)) and
O(c2s2 log(s2)). Then, we need to orthogonalize 1

2s
2 matrices. Note that the factor of 1

2 appears due to the fact that
the Fourier transform of a real matrix has certain symmetry properties, and we can use that fact to skip half the computations.
Doing the matrix orthogonalization with the Cayley Transform requires taking the inverse of a matrix, as well as matrix mul-
tiplication, the whole process has a complexity of about s2c3. The final steps consists of doing 1

2bs
2 matrix-vector products,

requiring 1
2bs

2c2 MACS, as well as another fast Fourier transform . Note that under our assumption that c > log(s2), the fast
Fourier transform operation is dominated by other operations. Cayley Convolutions require padding the kernel from a size
of c× c× k× k to a (usually much larger) size of c× c× s× s requiring a lot of extra memory. In particular we need to keep
the output of the (real) fast Fourier transform, the matrix inversion as well as the matrix multiplication in memory, requiring
about 1

2s
2c2 memory each.

CPL: CPL applies two convolutions as well as an activation for each layer. They also use the Power Method (on the full
convolution), however, its computational cost is dominated by the application of the convolutions.

LOT: Similar to Cayley, LOT performs the convolution in Fourier space. However, instead of using the Cayley transform,
they parameterize orthogonal matrices as V (V TV )−

1
2 . To find the inverse square root, authors relay on an iterative Newton

Method. In details, let Y0 = V TV and Z0 = I , then Yi defined as

Yi+1 =
1

2
Yi (3I − ZiYi) , Zi+1 =

1

2
(3I − ZiYi)Zi, (13)

converges to (V TV )−
1
2 . Executing this procedure, includes computing 4s2t matrix multiplications, requiring about 4s2c3t

MACS as well as 4s2c2t memory.

SLL: Similar to CPL, each SLL layer also requires evaluating two convolutions as well as one activation. However, SLL
also needs to compute the AOL rescaling, resulting in total computational cost of 2C +O(c3k4).

SOC: For each SOC layer we require applying t convolutions. Other required operations (application of Fantastic 4 for an
initial bound, as well as parameterizing the kernel such that the Jacobian is skew-symmetric) are cheap in comparison.

C.1. Memory requirements at inference time

The amount of memory required at inference time is much lower than what is needed during training. However, it might
still be important, for example when someone is interested in efficient deployment of models. During inference time, we do
not need to keep the activations in memory, but only need to store them while we are doing computations. Furthermore, all

Table 3. Vanishing Gradient Phenomena of Sandwhich Layer. ConvNetXS model has been tested with a small batch size (32). Training
of deeper layers (i.e., layers that are close to the input of the network) is tough due to the almost zero gradients.

Layer name Output Shape Gradient Norm

First Conv (1× 1 kernel size) (32, 16, 32, 32) 3,36 · 10−7

Activation (32, 16, 32, 32) 3,36 · 10−7

Downsize Block(3) (32, 32, 16, 16) 3,79 · 10−6

Downsize Block(3) (32, 64, 8, 8) 5,56 · 10−5

Downsize Block(3) (32, 128, 4, 4) 7,83 · 10−4

Downsize Block(3) (32, 256, 2, 2) 8,15 · 10−3

Downsize Block(1) (32, 512, 1, 1) 1,04 · 10−1

Flatten (32, 512) 1,04 · 10−1

Linear (32, 512) 1,82 · 10−1

First Channels (32, 10) 1,82 · 10−1



Table 4. SOTA from the literature on CIFAR-10 sorted by publication date (from older to newer). Readers can note that there is a clear
trend of increasing the model dimension to achieve higher robust accuracy. The last three publications train and use diffusion models for
data augmentation.

Certifiable Accuracy [%] Number of
Method Std.Acc [%] ε = 36

255 ε = 72
255 ε = 108

255 ε = 1 Parameters

BCOP Large [27] 72.1 58.2 - - - 2M
Cayley KW-Large [40] 75.3 59.1 - - - 2M
SOC LipNet-25 [36] 76.4 61.9 - - - 24M
AOL Large [34] 71.6 64.0 56.4 49.0 23.7 136M
LOT LipNet-25 [46] 76.8 64.4 49.8 37.3 - 27M
SOC LipNet-15 + CRC [37] 79.4 67.0 52.6 38.3 - 21M
CPL XL [31, Table1] 78.5 64.4 48.0 33.0 - 236M
SLL X-Large [3] 73.3 65.8 58.4 51.3 27.3 236M
LOT + DDPM [1] 81.4 69.1 - - - 5M
Gloro LiResNet + DDPM [18] 82.1 70.1 - - - 49M
Cholensky LiResNet + EDM [17] 87.0 78.1 66.6 53.5 - 49M

transformations on the weights can be cached once, and then we never need to perform them again. For this reason, most
methods do not have any overhead at all over standard convolutions at inference time. In particular, a layer of methods AOL,
BCOP, CPL, SLL or SOC does require memory of M + P , just like a standard convolution. (For a definition of M and P
see the beginning of Appendix C.) The methods that apply the convolution in the Fourier domain do require more memory.
In particular, applying a Cayley convolutions requires storing M + 1

2s
2c2 floats, and applying a LOT convolutions requires

memory to store M + s2c2 floats. The memory requirements of doing a forward pass through the whole model should be
given as the sum of memory required to store all (transformed) model parameters and the memory required to store the largest
activation during the forward pass.

D. Comparison with SOTA
In this section, we report state-of-the-art results from the literature. In contrast to our comparison, the runs reported often use
larger architectures and longer training times. Find results in Table Tab. 4.

E. Experimental Setup
In addition to theoretically analyzing different proposed layers, we also do an empirical comparison of those layers. In
order to allow for a fair and meaningful comparison, we try to fix the architecture, loss function and optimizer, and evaluate
all proposed layers with the same setting. From the data in Table 1 we know that different layers will have very different
throughputs. In order to have a fair comparison despite of that, we limit the total training time instead of fixing a certain
amount of training epochs. We report results of training for 2h, 10h as well as 24h. We describe the chosen setting below.

E.1. Architecture

We show the architecture used for our experiments in Tables 5 and 6. It is a standard convolutional architecture, that doubles
the number of channels whenever the resolution is reduced. Note that we exclusively use convolutions with the same input
and output size as an attempt to make the model less dependent on the initialization used by the convolutional layers. We
use kernel size 3 in all our main experiments. The layer Zero Channel Padding in Table 5 just appends channels with value
0 to the input, and the layer First Channels(c) outputs only the first c channels, and ignores the rest. Finally, the layer Pixel
Unshuffle (implemented in PyTorch) takes each 2× 2× c patches of an image and reshapes them into size 1× 1× 4c.

For each 1-Lipschitz layer, we also test architectures of different sizes. In particular, we define 4 categories of models
based on the number of parameters. We call those categories XS, S, M and L. See Table 7 for the exact numbers. In this table
we also report the width parameter w that ensures our architecture has the correct number of parameters.

Remark 2. For most methods, the number of parameters per layer are about the same. There are two exceptions, BCOP and
Sandwich. BCOP parameterizes the convolution kernel with c input channels and c output channels using a matrix of size



Table 5. Architecture. It depends on width parameter w, kernel size k (k ∈ {1, 3}) and the number of classes c. For details of the
Downsize Block see Tab. 6.

Layer name Output size

Input 32× 32× 3
Zero Channel Padding 32× 32× w
Conv (1× 1 kernel size) 32× 32× w
Activation 32× 32× w
Downsize Block(k) 16× 16× 2w
Downsize Block(k) 8× 8× 4w
Downsize Block(k) 4× 4× 8w
Downsize Block(k) 2× 2× 16w
Downsize Block(1) 1× 1× 32w
Flatten 32w
Linear 32w
First Channels(c) c

Table 6. Downsize Block(k) with input size s× s× t:

Layer name Kernel size Output size

5×
{ Conv k × k s× s× t

Activation - s× s× t
First Channels - s× s× t/2
Pixel Unshuffle - s/2× s/2× 2t

Table 7. Number of parameters for different model sizes, as well as the width parameter w such that the architecture in Tab. 5 has the
correct size.

Size Parameters (millions) w

XS 1 < p < 2 16
S 4 < p < 8 32
M 16 < p < 32 64
L 64 < p < 128 128

c× c and 2(k − 1) matrices of size c× c/2. Therefore, the number of parameters of a convolution using BCOP is kc2, less
than the k2c2 parameters of a plain convolution. The Sandwich layer has about twice as many parameters as the other layers
for the same width, as it parameterizes two weight matrices, A and B in Equation (12), per layer.

E.2. Optimizer

We use SGD with a momentum of 0.9 for all experiments. We also used a learning rate schedule. We choose to use
OneCycleLR, as described by [38], with default values as in PyTorch. We set the batch size to 256 for all the datasets except
for Imagenette where we choose 64 for memory-capacity reasons.

E.3. Training Time

On of our main goals is to evaluate what is the best model to use given a certain time budget. In order to do this, we measure
the time per epoch as described in Section 4.1 on an A100 GPU with 80GB memory for different methods and different
model sizes. Then we estimate the number of epochs we can do in our chosen time budget of either 2h, 10h or 24h, and



use that many epochs to train our models. The amount of epochs corresponding to the given time budget is summarized in
Table 8.

Table 8. Budget of training epochs for different model sizes, layer types and datasets. The batch size is 64 for Imagenette, and 256 for
other datasets. The training time is set to 2h for all datasets and model sizes.

CIFAR TinyImageNet Imagenette
XS S M L XS S M L S M L

AOL 837 763 367 83 223 213 123 34 136 108 54
BCOP 127 125 94 24 50 50 39 11 63 51 16
CPL 836 797 522 194 240 194 148 63 136 108 62
Cayley 356 214 70 17 138 86 30 8 81 47 -
LOT 222 68 11 - 83 29 5 - 33 - -
SLL 735 703 353 79 242 194 118 32 134 110 59
SOC 371 336 201 77 122 87 63 27 98 68 28

Param.s (M)† 1.57 6.28 25.12 100.46 1.58 6.29 25.16 100.63 6.30 25.18 100.68

† BCOP has less parameters overall, see Remark 2.

E.4. Hyperparameter Random Search

The learning rate and weight decay for each setting (model size, method and dataset) was tuned on the validation set. For
each method we did hyperparameter search by training for 2h (corresponding number of epochs in Table 8). We did 16
runs with learning-rate of the form 10x, where x is sampled uniformly in the interval [−4,−1], and with weight-decay
of the form 10x, where x is sampled uniformly in the interval [−5.5,−3.5]. Finally, we selected the learning rate and
weight decay corresponding to the run with the highest validation certified robust accuracy for radius 36/255. We use these
hyperparameters found also for the experiments with longer training time.

E.5. Datasets

We evaluate on four different datasets, CIFAR-10, CIFAR-100 [21], Tiny ImageNet [23] and Imagenette [16]. For CIFAR-10
and CIFAR-100 we use the architecture described in Table 5. Since the architectures are identical, so are time- and memory
requirements, and therefore also the epoch budget. As preprocessing we subtract the dataset channel means from each image.
As data augmentation at training time we apply random crops (4 pixels) and random flipping.

In order to assess the behavior on larger images, we replicate the evaluation on the Tiny ImageNet dataset [23]: a subset of
200 classes of the ImageNet [12] dataset, with images scaled to have size 64× 64. In order to allow for the larger input size
of this dataset, we add one additional Downsize Block to our model. We also divide the width parameter (given in Table 7)
by 2 to keep the amount of parameters similar. We again subtract the channel mean for each image. As data augmentation
we we us RandAugment [11] with 2 transformations of magnitude 9 (out of 31).

As a higher resolution dataset we use Imagenette. It is a subset of 10 classes from Imagenet, chosen to be easily dis-
tinguishable. We use the version with images with their shorter side resized to 320 pixels. At training time we first apply
RandAugment (magnitude 9) to those images, than take random crops of size 256×256, and finally subtract the dataset chan-
nel means. At inference time we use center crops of the same size. We also adjust our model slightly and use 8 Downsize
Blocks in total, with initial width set to 4, 8 or 16 (for model size S, M and L), in order conform to the size guide given in
Table 7. Finally, we reduced the batch size to 64 in order reduce the memory requirements. Note that for the large input
size of this dataset, perturbations with l2 norm bounded by 36/255 are tiny (e.g. equivalent to perturbing about 1% of the
pixels by a value of 1). However, for consistency with loss function etc. we choose to also use this radius for Imagenette.
Furthermore, a large proportion of the time when training on Imagenette is used for loading the images on the GPU. We
purposefully included this time in our in the determination of the epoch budget, since data loading is of course required for
training a model. In order to determine the epoch budget on Imagenette, we used an NVIDIA A40 GPU with 48 GB memory,
and we did 12 runs for the hyperparameter search.



E.6. Metrics

As described in Section 4.1 we evaluate the methods in terms of three main metrics. The throughput, the memory require-
ments as well and the certified robust accuracy a model can achieve in a fixed amount of time.

The evaluation of the throughput is performed on an NVIDIA A100 80GB PCIe GPU *. We measure it by averaging
the time it takes to process 100 batches (including forward pass, backward pass and parameter update), and use this value to
calculate the average number of examples a model can process per second. In order to estimate the inference throughput, we
first evaluate and cache all calculations that do not depend on the input (such as power iterations on the weights). With this
we measure the average time of the forward pass of 100 batches, and calculate the throughput from that value.

F. Batch Activation Variance
As one (simple to compute) sanity check that the models we train are actually 1-Lipschitz, we consider the batch activation
variance. For layers that are 1-Lipschitz, we show below that the batch activation variance cannot increase from one layer to
the next. This gives us a mechanism to detect (some) issues with trained models, including numerical ones, conceptual ones
as well as problems in the implementation.

To compute the batch activation variance we consider a mini-batch of inputs, and for this mini-batch we consider the
outputs of each layer. Denote the outputs of layer l as a(l)1 , . . . , a

(l)
b , where b is the batch size. Then we set

µ(l) =
1

b

b∑
i=1

a
(l)
i (14)

BatchVarl =
1

b

b∑
i=1

∥a(l)i − µ(l)∥22, (15)

where the l2 norm is calculated based on the flattened tensor. Denote layer l as fl. Then we have that

BatchVarl+1 =
1

b

b∑
i=1

∥a(l+1)
i − µ(l+1)∥22 (16)

≤ 1

b

b∑
i=1

∥fl(a(l)i )− fl(µ
(l))∥22 (17)

≤ 1

b

b∑
i=1

∥a(l)i − µ(l)∥22 (18)

= BatchVarl . (19)

Here, for the first inequality we use that (by definition) a(l+1)
i = fl(a

(l)
i ) and that the term

∑n
i=1 ∥a

(l+1)
i −x∥22 is minimal for

x = µ(l+1). The second inequality follows from the 1-Lipschitz property. The equation above shows that the batch activation
variance can not increase from one layer to the next for 1-Lipschitz layers. Therefore, if we see an increase in experiments
that shows that the layer is not actually 1-Lipschitz.

As a further check that the layers are 1-Lipschitz we also apply (convolutional) power iteration to each linear layer after
training.

G. Further Experimental Results
In this section, further experiments –not presented in the main paper— can be found.

G.1. Certified robust accuracy

A plot of the certified robust accuracy of different models sorted by value can be found in Figure 6.

*https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/PB-10577-001 v02.pdf



Model
52.5

55.0

57.5

60.0

62.5

65.0

67.5

Ro
bu

st
 A

cc
ur

ac
y 

[%
]

SO
C 

- M

SO
C 

- L

CP
L 

- L

CP
L 

- M

LO
T 

- S

CP
L 

- S

LO
T 

- X
S

SO
C 

- S

SL
L 

- M

CP
L 

- X
S

SL
L 

- L

SL
L 

- S

AO
L 

- L

BC
OP

 - 
L

SO
C 

- X
S

Ca
yl

ey
 - 

S

SL
L 

- X
S

Ca
yl

ey
 - 

M

AO
L 

- M

AO
L 

- S

BC
OP

 - 
M

Ca
yl

ey
 - 

L

Ca
yl

ey
 - 

XS

BC
OP

 - 
S

AO
L 

- X
S

LO
T 

- M

BC
OP

 - 
XS

Robust Accuracy for CIFAR10
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC

Model
20.0

22.5

25.0

27.5

30.0

32.5

35.0

Ro
bu

st
 A

cc
ur

ac
y 

[%
]

SO
C 

- M

SO
C 

- L

CP
L 

- M

SO
C 

- S

LO
T 

- S

CP
L 

- L

AO
L 

- M

BC
OP

 - 
M

AO
L 

- S

LO
T 

- X
S

SO
C 

- X
S

Ca
yl

ey
 - 

S

SL
L 

- S

Ca
yl

ey
 - 

M

BC
OP

 - 
S

CP
L 

- X
S

SL
L 

- M

AO
L 

- L

SL
L 

- L

LO
T 

- M

Ca
yl

ey
 - 

L

Ca
yl

ey
 - 

XS

BC
OP

 - 
L

SL
L 

- X
S

BC
OP

 - 
XS

AO
L 

- X
S

Robust Accuracy for CIFAR100
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC

Model
12

14

16

18

20

22

Ro
bu

st
 A

cc
ur

ac
y 

[%
]

LO
T 

- S

SO
C 

- M

SO
C 

- L

AO
L 

- M

LO
T 

- X
S

AO
L 

- L

CP
L 

- M

CP
L 

- L

CP
L 

- S

AO
L 

- S

Ca
yl

ey
 - 

S

Ca
yl

ey
 - 

M

SO
C 

- X
S

CP
L 

- X
S

SL
L 

- L

SO
C 

- S

SL
L 

- S

LO
T 

- M

AO
L 

- X
S

Ca
yl

ey
 - 

XS

SL
L 

- M

BC
OP

 - 
M

BC
OP

 - 
S

BC
OP

 - 
L

Ca
yl

ey
 - 

L

SL
L 

- X
S

BC
OP

 - 
XS

Robust Accuracy for TinyImageNet
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC

Model

50

60

70

80

Ro
bu

st
 A

cc
ur

ac
y 

[%
]

CP
L 

- M

CP
L 

- L

CP
L 

- S

BC
OP

 - 
M

AO
L 

- M

AO
L 

- L

SO
C 

- M

SL
L 

- M

AO
L 

- S

Ca
yl

ey
 - 

S

BC
OP

 - 
S

SL
L 

- S

SO
C 

- S

SO
C 

- L

SL
L 

- L

Ca
yl

ey
 - 

M

Robust Accuracy for Imagenette
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC

Figure 6. Certified robust accuracy (ϵ = 36/255) in decreasing order. Note that the axes do not start at 0.

G.2. Different training time budgets

In this section we report the experimental results for three different training budgets: 2h, 10h and 24h. See the results in
Table 9 (CIFAR-10), Table 10 (CIFAR-100), Table 11 (Tiny ImageNet) and Table 12 (Imagenette). Each of those tables
also reports the best learning rate and weight decay found by the random search for each setting. Furthermore, a different
representation of the impact of the training time on the robust accuracy can be found in Figure 7.

G.3. Time and Memory Requirements on Tiny ImageNet

See Appendix G.3 for an evaluation of time and memory usage for Tiny ImageNet dataset. The models used on CIFAR-10
and the ones on Tiny ImageNet are identical up to one convolutional block, therefore also the results in Appendix G.3 are
similar to the results on CIFAR-10 reported in the main paper.



0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Ro
bu

st
 A

cc
ur

ac
y

ConvNetXS ConvNetS
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC

2h 10h 24h
training_time

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Ro
bu

st
 A

cc
ur

ac
y

ConvNetM

2h 10h 24h
training_time

ConvNetL

Figure 7. Line plots of the robust accuracy for various methods where models are training with different time budgets

G.4. Kernel size 1× 1

For CIFAR-10 dataset, we tested models where convolutional layers have a kernel size of 1 × 1, to evaluate if the quicker
epoch time can compensate for the lower number of parameters. In almost all cases the answer was negative, the version
with 3× 3 kernel outperformed the one with the 1× 1 kernel.We therefore do not recommend reducing the kernel size. See
Table 13 for a detailed view of the accuracy and robust accuracy.

G.5. Clean Accuracy

As a reference, we plotted the accuracy of different models in Figure 9. The rankings by accuracy are similar to the rankings
by certified robust accuracy. One difference is that the Cayley method performs better relative to other methods when
measured in terms of accuracy.

H. Additional Discussion
We will provide additional discussions on the results that we have described in the main paper, and some speculation what
contributes to a well performing methods: (See also Figure 10.)

H.1. Detailed Discussion of the results

All layer types considered in this paper have comparable expressive power. Therefore, all networks could reach comparable
accuracy if trained to convergence. However, training Lipschitz networks to convergence is typically not possible, because
the training loss decreases very slowly (logarithmic in the number of epochs). This is the reason why we adopt the setting of
time budgets.



XS S M L
Model Size

7.5 sec
15 sec
30 sec
1 min
2 min
4 min
8 min

Ti
m

e
Training time per epoch

AOL
BCOP
CPL
Cayley
LOT
SLL
SOC
Standard

XS S M L
Model Size

1 GB

2 GB

4 GB

8 GB

16 GB

32 GB

64 GB

M
em

or
y 

(G
B)

Memory required training
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC
Standard

TXS TS TM TL
Model Size

29

210

211

212

213

214

215

Th
ro

ug
hp

ut
 (e

xa
m

pl
es

/s
)

Inference Throughput per second
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC
Standard

XS S M L
Model Size

125 MB

250 MB

500 MB

1 GB

2 GB

4 GB

M
em

or
y

Memory required forward
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC
Standard

Figure 8. Measured time and memory requirements on Tiny ImageNet.

Different 1-Lipschitz layers differ in their parametrizations, which influences the loss landscape and gradient properties.
Our results suggest that the main factor determining a method’s robust accuracy is how easily it can represent the identity
map. Layers that can proxy as skip connections (CPL, SLL, SOC) generally perform better than layers that do not have
this ability, but use close-to-identity initialization (AOL, LOT), which themselves perform better than layers that do neither
(BCOP, Cayley). Presumably this is because MaxMin activations reduce the batch activation variance in the forward pass
when alternated with non-identity layers. Low variance implies small difference in score values, and this in turn causes low
certified robust accuracy.

Note that the three methods CPL, SLL and SOC divide by an upper bound of the Lipschitz constant in their calculation at
some point, and all three methods have the property that if the upper bound is loose they do approximate the identity map. So
by setting the parameters to any value that makes the bound loose, the network can approximate the identity map. Since the
upper bounds are usually only tight for a small subspace of parameter matrices, we expect that a large learning rate does not
hurt the performance too much, since the individual layers will just end up approximating an identity map. This seems like a
very useful property for a network to possess, and we expect that this is one important reason behind the good performance
of those methods.

Our results also allow ruling out some other possible explanation: one might suspect that AOL, CPL, and SLL suffer from
vanishing gradients, because they do not enforce exact orthogonality but only enforce that the Lipschitz constant is bounded
by 1. Our experiments, however, do not show evidence of this. Also, one might suspect that slower methods perform worse,
because they allow fewer epochs for a given time budget. Again, our experiments do not support this. Two relative slow
methods (SOC, LOT) are among the best ones.

H.2. Influence of Image Resolution:

The results on Imagenette (Table 12) highlight some different properties of the methods. First note that when training for 2
hours the performance of different models varies drastically, but when trained for longer (e.g. 24 hours) most methods reach
more similar performance. Among the methods, CPL clearly performs best. AOL also perform well, SLL is competitive
in particular for shorter training times, and BCOP does well at least when trained for 24 hours. Note that the calculations
performed by those methods are independent of the image resolution; the methods rescale or construct the kernel directly.
So in relation to applying the convolution, the rescaling becomes much cheaper to calculate. This is not the case for SOC,
and whilst it was a top performer on the datasets with low image resolution, it is much worse compared to other methods on
Imagenette.



Model

65

70

75

80

Ac
cu

ra
cy

 [%
]

SO
C 

- M

SO
C 

- L

CP
L 

- L

CP
L 

- M

LO
T 

- S

CP
L 

- S

LO
T 

- X
S

SL
L 

- M

SO
C 

- S

CP
L 

- X
S

BC
OP

 - 
L

Ca
yl

ey
 - 

M

SL
L 

- L

SL
L 

- S

Ca
yl

ey
 - 

S

SO
C 

- X
S

BC
OP

 - 
M

AO
L 

- L

SL
L 

- X
S

AO
L 

- S

Ca
yl

ey
 - 

L

AO
L 

- M

Ca
yl

ey
 - 

XS

BC
OP

 - 
S

LO
T 

- M

AO
L 

- X
S

BC
OP

 - 
XS

Accuracy for CIFAR10
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC

Model
25

30

35

40

45

Ac
cu

ra
cy

 [%
]

SO
C 

- M

SO
C 

- L

SO
C 

- S

CP
L 

- M

LO
T 

- S

AO
L 

- M

CP
L 

- L

Ca
yl

ey
 - 

S

BC
OP

 - 
M

Ca
yl

ey
 - 

M

LO
T 

- X
S

AO
L 

- S

SO
C 

- X
S

Ca
yl

ey
 - 

L

SL
L 

- S

BC
OP

 - 
S

LO
T 

- M

SL
L 

- M

Ca
yl

ey
 - 

XS

CP
L 

- X
S

BC
OP

 - 
L

SL
L 

- L

AO
L 

- L

BC
OP

 - 
XS

SL
L 

- X
S

AO
L 

- X
S

Accuracy for CIFAR100
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC

Model
17.5

20.0

22.5

25.0

27.5

30.0

32.5

Ac
cu

ra
cy

 [%
]

LO
T 

- S

SO
C 

- L

SO
C 

- M

LO
T 

- X
S

CP
L 

- L

AO
L 

- M

Ca
yl

ey
 - 

M

AO
L 

- L

CP
L 

- M

Ca
yl

ey
 - 

S

AO
L 

- S

CP
L 

- S

SO
C 

- X
S

SO
C 

- S

LO
T 

- M

CP
L 

- X
S

SL
L 

- L

Ca
yl

ey
 - 

XS

BC
OP

 - 
M

Ca
yl

ey
 - 

L

SL
L 

- S

BC
OP

 - 
L

AO
L 

- X
S

SL
L 

- M

BC
OP

 - 
S

SL
L 

- X
S

BC
OP

 - 
XS

Accuracy for TinyImageNet
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC

Model
50

60

70

80

90

Ro
bu

st
 A

cc
ur

ac
y 

[%
]

CP
L 

- M

CP
L 

- L

CP
L 

- S

BC
OP

 - 
M

AO
L 

- M

SO
C 

- M

SL
L 

- M

AO
L 

- L

BC
OP

 - 
S

Ca
yl

ey
 - 

S

AO
L 

- S

SL
L 

- S

SO
C 

- S

SL
L 

- L

SO
C 

- L

Ca
yl

ey
 - 

M

Robust Accuracy for Imagenette
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC

Figure 9. Barplots of clean accuracy of the models with the different layers, sorted by decreasing clean accuracy.

H.3. Potential future directions

Based on some of the observations above, there are plenty of interesting future directions. For example, we did not consider
the influence of
• Batch size: The parameter transformation (by definition) only have to be done once per batch. So, in particular for

computationally expensive methods, we expect that increasing the batch size could increase performance. For this then the
required memory becomes an important factor.

• Initialization: As mentioned above, we do believe that initialization is a very important factor for 1-Lipschitz networks.
We are very curious to see the influence being explored in future work.

• Model depth: In this work, we have only varied the model with, and left the depth constant. Maybe model depth is an
important factor of how well some of the methods perform.

• Optimizer: Some methods might benefit from using a different optimizer, for example ADAM.
• Data augmentation: We used only simple standard data augmentation on CIFAR. Maybe more complex data augmenta-



Figure 10. Overall performance of different methods summarized in a single number, for metrics training time per epoch (TT), inference
time per epoch (IT), certified robust accuracy (RA), training memory requirements (TM), inference memory requirements (IM) as well as
accuracy (A). Higher is better.

tion, potentially even using a generative model, as done by [1, 17], can change the relative performance of the methods
compared.

Finally, different methods seem to have different strengths, it might be useful to look into combining them, for example by
using different methods for early (high resolution) layers and later layers (with more channels).

I. Issues and observations
As already thoroughly analyzed in the dedicated section, some of the known methods in the literature have been omitted in the
main paper since we faced serious concerns. Nevertheless, we also encountered some difficulties during the implementation
of the methods that we did report in the main paper. The aim of this section is to highlight these difficulties, we hope this can
open a constructive debate.
1. In the SLL [3] code, taken from the authors’ repository, there is no attention to numerical errors that can easily happen

from close-to-zero divisions during the parameter transformation. We solve the issue, by adopting the commonly used
strategy, i.e. we included a factor of 1 · 10−6 while dividing for the AOL-rescaling of the weight matrix. Furthermore, the
code provided in the SLL repository only works for a kernel size of 3, we fixed the issue in our implementation.

2. The CPL method [31] features a high sensitivity to the initialization of the weights. Long training, e.g. 24-hour training,
can sometimes result in NaN during the update of the weights. In that case we re-ran the models with different seeds.

3. Furthermore, there was no initialization method stated in the CPL paper, and also no code was provided. Therefore, we
used the initialization from the similar SLL method.

4. During the training of Sandwich we faced some numerical errors. To investigate such errors, we tested a lighter version of
the method — without the learnable rescaling Ψ — for the reason described in Remark 3, which shows that the rescaling
Ψ inside the layer can be embedded into the bias term and hence the product ΨΨ−1 can be omitted.

5. Similarly, for SLL, the matrix Q in Equation (8) does not add additional degrees of freedom to the model. Instead of
having parameters W , Q and b we could define and optimize over P = WQ−1 and b̃ = Q−1b. However, for our
experiments we used the original parameterization.



6. The method Cayley [40], in the form proposed in the original paper, does not cache the — costly — transformation of the
weight matrix whenever the layer is in inference mode. We fix this issue in our implementation.

7. Also, for method Cayley the algorithm stated in their paper differs from the version in their code. We used the version
from the supplied code for our analysis as well as experiments.

8. The LOT method, [46], leverages 10 inner iterations for both training and inference in order to estimate the inverse of the
square root with their proposed Newton-like method. Since the gradient is tracked for the whole procedure, the amount
of memory required during the training is prohibitive for large models. Furthermore, since the memory is required for the
parameter transformation, reducing the batch size does not solve this problem. In order to make the Large model (L) fit in
the memory, we tested the LOT method with only 2 inner iterations. However, the performance in terms of accuracy and
robust accuracy is not comparable to other strategies, hence we omitted it from our tables.

Remark 3. The learnable parameter Ψ of the sandwich layer corresponds to a scaling of the bias. In details, for each
parameters A,B, b and Ψ = diag

(
edi

)
there exists a rescaling of the bias b̃ such that

l(x) =
√
2ATΨReLU

(√
2Ψ−1Bx+ b

)
=

√
2ATReLU

(√
2Bx+ b̃

)
(20)

Proof. Observing that for each α > 0 and x ∈ R, ReLU (αx) = αReLU (x), and that

∀x ∈ Rn, Ψ−1x =

e−d1x1

...
e−dnxn

 ,

the following identity holds
l(x) =

√
2ATΨReLU

(√
2Ψ−1Bx+ b

)
=

√
2ATΨReLU

(√
2Ψ−1

(√
2Bx+Ψb

))
=

√
2ATΨΨ−1ReLU

(√
2Bx+Ψb

)
=

√
2ATReLU

(√
2Bx+Ψb

)
.

(21)

Considering b̃ = Ψb concludes the proof.

J. Code
We often build on code provided with the original papers. This includes
• https://github.com/berndprach/AOL (AOL)
• https://github.com/ColinQiyangLi/LConvNet (BCOP)
• https://github.com/MILES-PSL/Convex-Potential-Layer (CPL)
• https://github.com/locuslab/orthogonal-convolutions (Cayley)
• https://github.com/AI-secure/Layerwise-Orthogonal-Training (LOT)
• https://github.com/acfr/LBDN (Sandwich)
• https://github.com/araujoalexandre/Lipschitz-SLL-Networks (SLL)
• https://github.com/singlasahil14/SOC (SOC)
We are grateful for authors providing code to the research community.

https://github.com/berndprach/AOL
https://github.com/ColinQiyangLi/LConvNet
https://github.com/MILES-PSL/Convex-Potential-Layer
https://github.com/locuslab/orthogonal-convolutions
https://github.com/AI-secure/Layerwise-Orthogonal-Training
https://github.com/acfr/LBDN
https://github.com/araujoalexandre/Lipschitz-SLL-Networks
https://github.com/singlasahil14/SOC


Table 9. Experimental results on CIFAR-10. We report the best learning rate and weight decay found by a random search, as well as
accuracy and certified robust accuracy for radius ϵ = 36/355, both for different training time budgets.

Accuracy [%] Robust Accuracy [%]
Layer Model LR WD 2h 10h 24h 2h 10h 24h

AOL XS 6 · 10−2 4 · 10−5 68.5 71.7 71.7 55.6 58.8 59.1
S 1 · 10−2 5 · 10−5 70.9 73.0 73.6 57.9 61.0 60.8
M 2 · 10−2 1 · 10−4 70.3 73.4 73.4 57.0 60.7 61.0
L 2 · 10−2 7 · 10−5 64.7 71.8 73.7 51.4 59.0 61.5

BCOP XS 7 · 10−3 3 · 10−4 69.0 70.8 71.7 55.0 57.6 58.5
S 4 · 10−3 8 · 10−5 70.6 72.5 73.1 57.5 59.1 59.3
M 6 · 10−3 7 · 10−6 71.8 73.6 74.0 57.9 59.9 60.5
L 1 · 10−3 9 · 10−6 67.6 73.2 74.6 52.5 59.7 61.5

CPL XS 3 · 10−2 1 · 10−4 71.7 74.3 74.9 58.2 61.7 62.5
S 7 · 10−2 1 · 10−4 73.9 74.1 76.1 61.1 61.1 64.2
M 8 · 10−2 1 · 10−4 74.3 76.4 76.6 61.6 64.7 65.1
L 5 · 10−2 3 · 10−4 72.6 76.5 76.8 59.1 64.5 65.2

Cayley XS 2 · 10−2 2 · 10−5 71.3 73.2 73.1 57.2 59.4 59.5
S 1 · 10−2 1 · 10−5 71.9 73.6 74.2 58.1 60.0 61.1
M 1 · 10−2 6 · 10−6 70.2 73.5 74.4 55.8 60.2 61.0
L 8 · 10−3 2 · 10−4 61.3 71.1 73.6 45.9 57.0 60.1

LOT XS 8 · 10−2 4 · 10−6 73.5 75.2 75.5 59.6 62.7 63.4
S 3 · 10−2 7 · 10−5 70.5 75.0 76.6 56.4 62.3 64.6
M 2 · 10−2 9 · 10−6 61.4 69.3 72.0 45.7 54.7 58.7

SLL XS 9 · 10−2 2 · 10−5 69.9 73.1 73.7 56.4 59.9 61.0
S 4 · 10−2 2 · 10−4 72.9 74.0 74.2 59.8 61.4 62.0
M 9 · 10−2 9 · 10−5 70.5 74.4 75.3 57.4 61.5 62.8
L 6 · 10−2 2 · 10−4 56.7 72.7 74.3 38.9 60.0 62.3

SOC XS 5 · 10−2 7 · 10−6 68.9 72.9 74.1 55.1 60.0 61.3
S 2 · 10−2 2 · 10−5 67.3 73.3 75.0 53.2 60.8 62.9
M 7 · 10−2 1 · 10−4 73.1 77.0 76.9 60.3 66.0 66.3
L 2 · 10−2 2 · 10−4 62.3 73.8 76.9 46.2 60.8 65.4



Table 10. Experimental results on CIFAR-100. We report the best learning rate and weight decay found by a random search, as well as
accuracy and certified robust accuracy for radius ϵ = 36/355, both for different training time budgets.

Accuracy [%] Robust Accuracy [%]
Layer Model LR WD 2h 10h 24h 2h 10h 24h

AOL XS 3 · 10−2 1 · 10−4 37.9 40.1 40.3 26.6 28.0 27.9
S 2 · 10−2 2 · 10−5 40.5 43.4 43.4 29.0 30.8 31.0
M 7 · 10−2 6 · 10−6 40.5 43.5 44.3 28.4 31.1 31.4
L 6 · 10−2 4 · 10−5 34.5 41.1 41.9 23.1 29.2 29.7

BCOP XS 8 · 10−3 3 · 10−4 35.4 40.0 41.4 22.9 27.8 28.4
S 6 · 10−3 3 · 10−4 37.8 42.1 42.8 24.5 29.5 30.1
M 2 · 10−3 2 · 10−4 37.6 43.8 43.7 24.6 30.4 31.2
L 4 · 10−3 1 · 10−5 29.2 40.3 42.2 17.3 27.2 29.2

CPL XS 9 · 10−2 3 · 10−5 39.7 42.0 42.3 27.9 29.8 30.1
S 9 · 10−2 2 · 10−4 42.1 1.0 1.0 29.8 0.0 0.0
M 4 · 10−2 4 · 10−5 40.5 44.5 45.2 27.4 32.4 33.2
L 9 · 10−2 2 · 10−4 40.1 43.9 44.3 27.3 31.5 32.1

Cayley XS 4 · 10−2 2 · 10−5 41.1 41.6 42.3 27.9 29.2 29.2
S 2 · 10−2 1 · 10−4 42.3 43.1 43.9 28.8 30.4 30.5
M 6 · 10−3 4 · 10−6 38.6 43.3 43.5 25.3 29.9 30.5
L 5 · 10−3 2 · 10−5 26.3 40.3 42.9 14.3 27.0 29.5

LOT XS 6 · 10−2 3 · 10−4 42.7 43.8 43.5 29.4 30.9 30.8
S 5 · 10−2 2 · 10−4 40.3 45.2 45.2 27.2 31.8 32.5
M 4 · 10−2 9 · 10−5 28.4 38.9 42.8 15.5 25.9 29.6

SLL XS 5 · 10−2 6 · 10−5 37.9 40.9 41.4 25.9 29.0 28.9
S 1 · 10−1 7 · 10−5 40.0 41.9 42.8 28.4 29.9 30.5
M 7 · 10−2 2 · 10−4 39.3 41.9 42.4 27.0 30.0 29.9
L 9 · 10−2 8 · 10−5 22.0 38.5 42.1 10.8 26.4 29.6

SOC XS 7 · 10−2 2 · 10−4 40.7 43.1 43.1 27.7 29.7 30.6
S 9 · 10−2 1 · 10−4 42.2 44.5 45.2 29.3 31.9 32.6
M 4 · 10−2 3 · 10−4 41.8 46.2 47.3 28.8 33.5 34.9
L 7 · 10−2 3 · 10−5 34.7 43.1 46.2 21.5 30.2 33.5



Table 11. Experimental results on Tiny ImageNet. We report the best learning rate and weight decay found by a random search, as well
as accuracy and certified robust accuracy for radius ϵ = 36/355, both for different training time budgets.

Accuracy [%] Robust Accuracy [%]
Layer Model LR WD 2h 10h 24h 2h 10h 24h

AOL XS 3 · 10−2 2 · 10−5 24.5 26.9 26.6 16.5 18.4 18.1
S 7 · 10−2 5 · 10−6 24.9 27.3 29.3 16.8 18.5 19.7
M 4 · 10−2 8 · 10−6 26.2 29.5 30.3 18.1 20.4 21.0
L 2 · 10−2 8 · 10−6 22.1 27.7 30.0 12.8 18.8 20.6

BCOP XS 6 · 10−4 5 · 10−5 11.7 20.4 22.4 4.7 11.6 13.8
S 7 · 10−4 4 · 10−5 19.0 25.3 26.2 10.1 15.7 16.9
M 3 · 10−4 1 · 10−4 20.0 25.4 27.6 10.5 15.8 17.2
L 1 · 10−4 3 · 10−4 9.6 23.6 27.0 2.6 14.0 16.8

CPL XS 1 · 10−1 9 · 10−6 26.5 27.5 28.3 16.3 17.5 18.9
S 4 · 10−2 3 · 10−5 26.2 29.3 29.3 16.7 19.4 19.7
M 4 · 10−2 2 · 10−5 26.3 29.4 29.8 16.7 19.5 20.3
L 6 · 10−2 1 · 10−5 24.7 29.8 30.3 15.0 19.2 20.1

Cayley XS 8 · 10−3 8 · 10−5 25.3 27.5 27.8 15.7 17.9 17.9
S 5 · 10−3 7 · 10−5 25.6 29.3 29.6 15.8 19.1 19.5
M 4 · 10−3 4 · 10−5 20.2 29.2 30.1 9.9 18.8 19.3
L 1 · 10−3 3 · 10−4 5.7 22.1 27.2 0.9 11.9 16.7

LOT XS 3 · 10−2 2 · 10−4 28.1 31.1 30.7 18.2 20.4 20.8
S 5 · 10−2 1 · 10−4 27.1 32.0 32.5 16.3 21.6 21.9
M 2 · 10−2 6 · 10−6 12.6 25.2 28.8 4.6 14.5 18.1

SLL XS 7 · 10−2 3 · 10−4 24.2 25.3 25.1 14.9 16.7 16.6
S 4 · 10−2 2 · 10−4 24.4 25.7 27.0 15.6 16.8 18.4
M 5 · 10−2 5 · 10−5 17.0 26.2 26.5 7.8 17.0 17.7
L 7 · 10−2 1 · 10−4 11.4 26.2 27.9 2.9 16.7 18.8

SOC XS 9 · 10−2 1 · 10−4 25.5 28.7 28.9 15.7 18.7 18.9
S 7 · 10−2 2 · 10−5 23.9 28.4 28.8 14.0 18.5 18.8
M 7 · 10−2 1 · 10−4 25.7 31.1 32.1 15.5 20.4 21.2
L 6 · 10−2 1 · 10−4 20.3 30.1 32.1 10.1 19.7 21.1



Table 12. Experimental results on Imagenette. We report the best learning rate and weight decay found by a random search, as well as
accuracy and certified robust accuracy for radius ϵ = 36/355, both for different training time budgets.

Accuracy [%] Robust Accuracy [%]
Layer Model LR WD 2h 10h 24h 2h 10h 24h

AOL S 9 · 10−03 1 · 10−05 71.0 78.9 80.8 62.5 74.3 76.8
M 5 · 10−03 1 · 10−04 73.2 80.7 83.7 64.3 75.8 79.9
L 5 · 10−03 1 · 10−04 69.7 79.2 82.8 59.7 74.2 78.5

BCOP S 9 · 10−04 1 · 10−04 37.3 75.4 81.2 15.1 66.9 75.6
M 2 · 10−03 2 · 10−04 36.4 77.8 84.5 15.6 71.3 80.1
L 7 · 10−02 4 · 10−06 9.8 9.8 9.8 9.8 9.8 9.8

CPL S 9 · 10−02 5 · 10−05 75.8 83.5 85.5 68.3 78.8 80.8
M 9 · 10−02 3 · 10−05 79.5 84.8 86.5 73.5 80.3 82.4
L 7 · 10−02 3 · 10−05 76.0 85.1 86.4 68.5 80.3 82.3

Cayley S 6 · 10−04 3 · 10−05 60.9 78.0 81.2 45.4 71.5 75.8
M 1 · 10−04 1 · 10−05 48.6 69.7 77.9 30.1 59.4 71.7

LOT S 7 · 10−03 1 · 10−04 66.2 tbd tbd 55.7 tbd tbd

SLL S 7 · 10−02 5 · 10−06 70.6 77.6 80.8 60.6 70.1 75.4
M 7 · 10−02 6 · 10−06 71.7 80.4 83.4 62.0 74.3 78.0
L 5 · 10−02 5 · 10−06 64.7 75.4 79.3 51.0 67.2 72.8

SOC S 9 · 10−03 7 · 10−05 60.7 77.2 80.6 45.1 69.7 74.7
M 2 · 10−02 9 · 10−05 63.4 79.5 83.6 50.4 72.2 78.4
L 8 · 10−03 3 · 10−04 52.5 71.7 79.0 34.1 62.2 73.5



Table 13. Kernel size 1 × 1, on CIFAR-10, for different time budgets. We report accuracy and certified robust accuracy for radius
ϵ = 36/355, as well as the best learning rate and weight decay found by a random search.

Accuracy [%] Robust Accuracy [%]
Layer Model LR WD 2h 10h 24h 2h 10h 24h

AOL XS 8 · 10−2 7 · 10−6 66.5 67.9 68.0 52.1 53.9 54.3
S 5 · 10−2 4 · 10−5 67.7 69.0 69.7 53.7 55.1 55.6
M 2 · 10−2 1 · 10−4 67.5 69.4 70.0 54.1 55.7 56.7
L 3 · 10−2 8 · 10−5 64.3 68.7 69.6 50.0 54.8 56.1

BCOP XS 1 · 10−2 7 · 10−5 65.3 67.5 68.6 51.3 53.4 54.5
S 4 · 10−3 2 · 10−5 66.9 69.1 69.5 52.6 54.3 55.4
M 8 · 10−3 5 · 10−6 67.3 69.8 70.3 52.8 55.5 56.1
L 4 · 10−3 2 · 10−4 64.0 68.6 69.6 48.9 54.3 55.8

BnB XS 8 · 10−3 1 · 10−4 66.1 66.3 66.4 52.1 51.2 51.5
S 2 · 10−2 2 · 10−5 67.9 69.8 69.7 53.1 55.8 55.3
M 2 · 10−2 4 · 10−6 67.5 70.3 71.0 52.8 56.0 56.8
L 3 · 10−2 2 · 10−4 66.0 66.2 61.0 51.5 51.7 45.5

CPL XS 2 · 10−2 1 · 10−4 69.2 71.5 72.0 55.5 58.6 59.1
S 9 · 10−2 9 · 10−5 70.6 71.2 10.0 57.8 58.2 0.0
M 1 · 10−1 2 · 10−4 69.7 10.0 10.0 56.1 0.0 0.0
L 8 · 10−2 9 · 10−6 67.8 72.3 73.8 54.0 59.4 61.1

Cayley XS 1 · 10−2 2 · 10−5 65.3 67.4 67.9 50.7 52.9 53.8
S 1 · 10−2 4 · 10−6 65.9 68.4 68.8 51.3 53.8 54.5
M 2 · 10−2 2 · 10−5 63.5 67.5 69.1 48.8 53.4 55.0
L 2 · 10−2 8 · 10−5 57.4 64.7 67.2 41.4 49.9 52.9

LOT XS 2 · 10−2 2 · 10−4 65.8 68.0 69.3 51.1 53.9 54.9
S 5 · 10−2 3 · 10−4 60.0 68.1 68.8 44.4 54.3 54.5

SLL XS 4 · 10−2 1 · 10−4 67.9 70.2 10.0 54.8 57.3 0.0
S 3 · 10−2 2 · 10−4 69.1 70.4 10.0 55.9 57.1 0.0
M 7 · 10−2 2 · 10−4 69.0 10.0 10.0 55.5 0.0 0.0
L 9 · 10−2 2 · 10−4 62.9 69.5 69.8 48.7 55.6 56.1

SOC XS 7 · 10−2 2 · 10−5 65.0 67.2 67.5 49.2 52.1 52.3
S 4 · 10−2 6 · 10−6 65.4 68.1 68.7 49.9 52.5 54.2
M 3 · 10−2 7 · 10−5 66.0 69.2 70.5 50.5 54.3 55.6
L 4 · 10−2 9 · 10−5 64.0 69.2 70.4 48.5 54.3 55.9


	. Spectral norm and orthogonalization
	. Algorithms omitted in the main paper
	. Computation Complexity and Memory Requirement
	. Memory requirements at inference time

	. Comparison with SOTA
	. Experimental Setup
	. Architecture
	. Optimizer
	. Training Time
	. Hyperparameter Random Search
	. Datasets
	. Metrics

	. Batch Activation Variance
	. Further Experimental Results
	. Certified robust accuracy
	. Different training time budgets
	. Time and Memory Requirements on Tiny ImageNet
	. Kernel size 11
	. Clean Accuracy

	. Additional Discussion
	. Detailed Discussion of the results
	. Influence of Image Resolution:
	. Potential future directions

	. Issues and observations
	. Code

