
Jack of All Tasks, Master of Many: Designing General-purpose
Coarse-to-Fine Vision-Language Model

(Supplementary Material)

Axis Metric and Split

COCO Cap CIDEr on Karpathy test
VQAv2 Accuracy on val
VCR Accuracy on val in Q→ AR setup
POPE F1 score on Random split
HM Accuracy on test
TextVQA Accuracy on test
REC Precision@IoU=0.5 on RefCOCO val
RES mIoU on RefCOCO val
GREC Precision on RefCOCO val
GRES gIoU on RefCOCO val
BoxQA Accuracy on Visual7W
NLVR2 Accuracy on dev
IconQA Accuracy on test
iCoSeg Average Jaccard index (J ) on test

Table A.1. Details of the reported metrics and split information
in every axis of the radar plot in Figure 1. Red: Single-image
coarse-level tasks, Blue: Single-image region-level tasks, Olive-
Green: Multi-image coarse-level tasks, and Plum: Multi-image
region-level tasks.

A. Radar Chart Figure 1 Details

In this section, we explain the details of the radar chart in
Figure 1, which summarizes the comparative performance
of VistaLLM with MiniGPT-v2 [5], Ferret [37], Shikra [6]
and GPT4RoI [40]. None of these baselines address seg-
mentation and multi-image tasks using a single framework.
First, for illustrative purposes, we normalize each axis by
the score achieved by VistaLLM, which turns the axes in the
range (0, 1]. Next, we choose the origin of each axes suit-
ably to distinctly separate the the inner and outer frames for
better readability. For BoxQA, REC, and COCO Cap, the
origin is at 0.97, 0.96, and 0.75 normalized values, respec-
tively. For all remaining axes, the origin is at 0.92 normal-
ized value. Finally, we annotate each vertex with absolute
performance metric scores. The reported metric and split
name for each axis are listed in Table A.1.

B. Adaptive Sampling Algorithm

The algorithm of the proposed gradient-aware adaptive
sampling technique is given in Algorithm 1. Section 3.2
of the main manuscript provides details of each step.

Algorithm 1 Gradient-aware Adaptive Sampling
Require: Mask contour C

Number of dense points M
Final number of sampling points N (N≪M)
[p1, . . . , pM]← Uniform-Sample(C) ▷ Contour Discretization
for i ∈ {1, . . . ,M} do

l⃗1 = Join(pi, pi−1)
l⃗2 = Join(pi−1, pi+1)
θi = ∠l⃗1 l⃗2 ▷ Gradient Calculation

end for
Finalpoints ← []
indices← argsort(θi∈{1,...,M})[M-N:] ▷ Sorting
for j ∈ indices do

pj← Quantize(pj)
AddItem(Finalpoints, pj) ▷ Quantization

end for
Finalpoints is the final list of sampled points.

C. VistaLLM vs Existing Region-level MLLMs

With the fast progress of region-level general-purpose vi-
sion systems, works such as GPT4RoI [40], Shikra [6],
VisionLLM [32], KOSMOS-2 [26] and Ferret [37] resem-
ble VistaLLM, as they also aim to unify tasks with dif-
ferent granularity in a unified system. Additional related
works in this category includes PVIT [4], COMM [12],
CogVLM [33] and MiniGPT-v2 [5]. Moreover, meth-
ods like Visual ChatGPT [35], BuboGPT [41], DetGPT
[27], and LISA [15] employ external additional detection
and segmentation modules to unify fine-grained tasks in
a two-stage approach. Nevertheless, there exist clear dif-
ferences between VistaLLM from existing methods. First,
we present the first general-purpose system to support all
possible input and output formats, e.g., multiple images,
natural language, coordinate points, bounding boxes, seg-
mentation masks as inputs, and free-flowing text, points,
boxes, and masks as output. Table C.1 shows a side-
by-side comparison of input-output formats of all exist-
ing baselines. While Ferret supports boxes, points, and
masks in the input, it can not generate a mask as output
and, hence, can not address the segmentation task. On the
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Model
Input Type Output Type

Multiple
Images

Text Points Boxes Masks Text Points Boxes Masks

Two-
Stage

Visual ChatGPT [35] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓

BuboGPT [41] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗

DetGPT [27] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗

LISA [15] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓

End-to-
End

LLaVa [20] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

InstructBLIP [9] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

GPT4RoI [40] ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

KOSMOS-2 [26] ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

VisionLLM [32] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓

Shikra [6] ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

PVIT [4] ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

CogVLM [33] ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

COMM [12] ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

MiniGPT-v2 [5] ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Ferret [37] ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

VistaLLM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table C.1. Comparison of VistaLLM vs. existing general-purpose vision systems regarding input and output types. VistaLLM
supports all possible formats, including multiple images, natural language, points, bounding boxes, segmentation masks as inputs, and
free-flowing text, points, boxes, and masks as output.

Model
Image-level Tasks Region-level Tasks

Single-image Multi-image Single-image Multi-image
VQAv2 &
Captioning

Reasoning Reasoning BoxQA PointQA Detection Segmentation
Multi-instance
Segmentation

CoSeg

Two-
Stage

Visual ChatGPT [35] ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗

BuboGPT [41] ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

DetGPT [27] ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

LISA [15] ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗

End-to-
End

LLaVa [20] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

InstructBLIP [9] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

GPT4RoI [40] ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

KOSMOS-2 [26] ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

VisionLLM [32] ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗

Shikra [6] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

PVIT [4] ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

CogVLM [33] ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

COMM [12] ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

MiniGPT-v2 [5] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Ferret [37] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

VistaLLM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table C.2. Comparison of VistaLLM vs. existing general-purpose vision systems regarding supported tasks. VistaLLM integrates
a wide range of image-level and region-level vision-language reasoning and grounding tasks over single and multiple input images into a
unified framework.

other hand, VisionLLM can solve segmentation but can-
not process points, boxes, and masks in input and can not
solve REG, BoxQA, and PointQA. Second, unlike all ex-
isting works, VistaLLM supports multi-image input, en-
abling us to reason and ground over more than one im-
age and solve tasks like NLVR and CoSeg. Our pro-
posed instruction-guided image tokenizer module refines

and compresses the global image embeddings of multiple
images, helping VistaLLM to filter the necessary visual in-
formation required for the current task. Table C.2 systemat-
ically illustrates the capability of VistaLLM to solve a wide
range of image-level and region-level tasks over single and
multiple input images compared to previous systems. Third,
to efficiently convert segmentation masks into sequences,



we propose a gradient-aware adaptive contour sampling
scheme, which improves over previously used uniform sam-
pling approach [7, 8, 22, 42] by 3 − 4 mIoU scores on
different segmentation benchmarks. Lastly, we collect a
new training benchmark CoinIt, containing 6.8M training
samples and propose a new task, AttCoSeg (Attribute-level
Co-Segmentation) which addresses the lack of publicly-
available multi-image region-level datasets. Our proposed
system achieves stronger performance across 15 different
evaluation benchmarks, including mitigating object halluci-
nation to a significant extent.

D. Dataset Details
This section provides additional details of our training and
evaluation datasets.

COCO Captioning: Captions for the COCO dataset [18]
were sourced from Amazon’s Mechanical Turk (AMT),
with workers adhering to specified guidelines to ensure cap-
tion quality. The dataset includes 330,000 images, divided
into training, validation, and test categories. These cat-
egories comprise 413,915 captions for 82,783 images in
training, 202,520 captions for 40,504 images in validation,
and 379,249 captions for 40,775 images in the test set.

VQAv2: VQAv2 dataset [1] contains a collection of over
200,000 images, each paired with a portion of the more
than 1.1 million questions asked, gathering in total over 11
million responses. The questions cover a wide range, from
simple yes/no and counting queries to more complex open-
ended ones.

RefCOCO & RefCOCO+: The RefCOCO and Ref-
COCO+ datasets [21] were created through a two-player
game mechanism [38]. RefCOCO features 142,209 de-
scriptive expressions for 50,000 objects across 19,994 im-
ages, whereas RefCOCO+ includes 141,564 expressions for
49,856 objects in 19,992 images. Both datasets are divided
into training, validation, and two test sets – Test A and Test
B. Test A focuses on images with multiple people. At the
same time, Test B features images with multiple instances
of all other objects. A key difference between the two
datasets is that RefCOCO+ excludes location words from
its expressions, making it more complex than RefCOCO.
We perform referring expression comprehension (REC) and
referring expression segmentation (RES) tasks on the Ref-
COCO and RefCOCO+ datasets.

RefCOCOg: The RefCOCOg dataset was assembled using
Amazon Mechanical Turk, where participants were tasked
with crafting natural language descriptions for objects. It
comprises 85,474 expressions for 54,822 objects in 26,711
images. Notably, the expressions in RefCOCOg are longer
and more intricate, averaging 8.4 words, in contrast to the
more concise expressions in RefCOCO and RefCOCO+,
which average 3.5 words. This complexity makes Ref-

COCOg a more challenging dataset. We utilize the UMD
partition [25] of RefCOCOg, as it provides both validation
and testing sets, and there is no overlap between training
and validation images. We address both REC and RES tasks
on RefCOCOg.

gRefCOCO: The gRefCOCO dataset [11, 19] empowers
generalized referring expression comprehension (GREC)
and generalized referring expression segmentation (GRES)
tasks, which address the limitations of classical REC and
RES problem where there is always one target object. In
contrast, GREC and GRES allow expressions to refer to
an arbitrary number of target objects, including multi-target
and no-target scenarios, and help bring referring segmen-
tation into more realistic scenarios with advanced usages.
The gRefCOCO dataset contains 278,232 expressions, in-
cluding 80,022 multi-target and 32,202 no-target expres-
sions, referring to 60,287 distinct instances in 19,994 im-
ages. Masks and bounding boxes for all target instances are
given. Some of the single-target expressions of gRofCOCO
are inherited from RefCOCO. We perform both GREC and
GRES using the gRefCOCO dataset.

Flickr: The Flickr30K Entities dataset [28] is a pioneer-
ing collection in the field of grounded captioning. It in-
cludes 31,783 images paired with 158,000 caption anno-
tations. Each caption is carefully annotated, linking ev-
ery noun phrase to a manually outlined referential bound-
ing box. The dataset features a total of 276,000 such anno-
tated bounding boxes, offering a rich resource for image and
language processing research. We use Flickr dataset dur-
ing training for spot captioning task, where we instruct the
model to generate a caption of the input image, and locate
all the objects in the images by drawing bounding boxes.

Visual Genome: The Visual Genome dataset [14] is a key
resource for understanding the complex relationships within
images. It contains over 100,000 images, with each image
extensively annotated to capture an average of 21 objects,
18 attributes, and 18 inter-object relationships. A distinctive
feature of this dataset is the alignment of objects, attributes,
relationships, and region descriptions with the standardized
WordNet terminologies. This alignment makes it particu-
larly useful for tasks like Region Description and Entity
Recognition. Each annotated region in the dataset is accom-
panied by descriptive text, providing a wealth of data for im-
age understanding and semantic modeling. For referring ex-
pression generation (REG) purposes, we utilize a subset of
this dataset, which includes around 180,138 region-caption
pairs.

VCR: The Visual Commonsense Reasoning (VCR) dataset
[39] contains 290,000 multiple-choice questions derived
from 110,000 movie scenes. Each scene is paired with a
question demanding common-sense reasoning, an answer,
and a rationale for that answer. The unique aspect of VCR



is its requirement for models to not only provide answers
to complex visual questions but also to explain their rea-
soning. This dataset encompasses two sub-tasks: Question
Answering (Q → A), where the model selects the correct
answer from four options, and answer justification (QA →
R), where the model, given a question and its correct an-
swer, must choose the most fitting rationale from four op-
tions. Model performance in VCR is assessed using the Q
→ AR metric, which measures the accuracy of both answer-
ing questions and providing the correct justifications.
LLaVa: The LLaVA-Instruct-150K1 [20] is a collection
of 158K unique language-image instruction-following sam-
ples in total, including 58K in conversations, 23K in the
detailed description, and 77k in complex reasoning, respec-
tively. We incorporate the LLaVa dataset during the training
of our model.
LookTwiceQA: The LookTwiceQA [24] dataset contains
two different tasks - PointQA and BoxQA. The questions
are in three different templates - (i) What color is this [re-
gion]? (ii) What shape is this [region]? and (iii) What
action is this [region] doing? The question contains either
an input point or a box with three different granularity of
objects - any object, superclass, and object class. The train
set contains 40,409 questions across 12,867 images, and the
test-dev set contains 5,673 questions across 1,838 images.
Visual7W: The Visual7W dataset [43] is primarily tailored
for Visual Question Answering (VQA) tasks, featuring a
specialized dataset for region-level QA. In Visual7W, mod-
els encounter an image paired with a ”which”-type ques-
tion, for instance, ”Which one is the orange in the fruit bas-
ket?”. Participants are provided with four bounding boxes
in the image and must choose the correct one as the an-
swer. The Visual7W dataset comprises 25,733 images and
188,068 such questions.
TextVQA: TextVQA [30] is a QA dataset containing
45,336 questions based on 28,408 images, designed to chal-
lenge models in detecting, interpreting, and reasoning about
text present in images to generate accurate answers. We use
the TestVQA dataset as an unseen evaluation benchmark.
IconQA: IconQA [23] measures models’ abstract diagram
understanding and comprehensive cognitive reasoning abil-
ities. We use the test set of its multi-text-choice task, con-
taining 6,316 samples, as an unseen evaluation benchmark.
Hateful Memes (HM): The hateful memes dataset [13],
containing more than 10,000 image samples, is a binary
classification dataset to justify whether a meme contains
hateful content. The memes were selected in such a way
that strictly unimodal classifiers would struggle to classify
them correctly. We use the HM dataset as an unseen evalu-
ation benchmark.

1https : / / huggingface . co / datasets / liuhaotian /
LLaVA-Instruct-150K

POPE: The POPE evaluation benchmark [17] evaluates the
sevearity of object hallucination problem in MLLMs. POPE
consists of three different test splits - popular, random, and
adversarial- containing around 3,000 samples. Given an im-
age and a question, ”Is there a <object> in the image?” the
model has to answer with ’yes’ or ’no.’

NLVR2: The Natural Language for Visual Reasoning
(NLVR2) corpora, containing 107,292 samples, determine
whether a sentence is true about a pair of input images. The
data was collected through crowdsourcing, and solving the
task requires reasoning about sets of objects, comparisons,
and spatial relations.

CoSeg: We use three datasets for object co-segmentation
task - PASCAL VOC2010 [10], MSRC [34] and iCoSeg
[2]. PASCAL contains a total of 1,037 images of 20 ob-
ject classes. MSRC includes seven classes: bird, car, cat,
cow, dog, plane, and sheep. Each class contains ten images.
iCoseg dataset consists of 643 images from 38 categories.
Large variances of viewpoints and deformations are present
in this dataset.

AttCoSeg: Since the existing object co-segmentation
datasets [2, 10, 34] are small-scale and simple to solve,
we construct a more challenging larger-scale multi-image
region-level dataset. We use Group-wise RES [36] anno-
tations to sample high-quality images containing objects
with similar fine-grained attributes (shape, color, size, po-
sition). We refer to such images as positives. While train-
ing VistaLLM, we input these positive image pairs and ask
the model to segment the object with common traits in both
of them. We name this task attribute-level co-segmentation
(AttCoSeg), which contains over 804k training samples,
and help VistaLLM to gain significant generalized reason-
ing and grounding ability over multiple input images.

E. Examples Instructions for Different Tasks
Section 5.1 discusses transforming public datasets like
REC, RES, GREC, and GRES into instruction-following
format by employing meticulously crafted task templates.
These templates are detailed in Table E.1. We have included
only 2-3 examples for each task for brevity. We manually
write one example description of each task and resort to
GPT-3.5 [3] to create hundreds of variations. During train-
ing, we randomly pick one instruction for each sample.

F. Additional Ablation Study
In this section, we conduct additional ablation experiments
on training dataset, and the image encoder.

Size of training dataset: We study the effect of increas-
ing training samples for REC and RES tasks in Figure F.1.
We start with REC and REG training datasets for the REC
task in Figure F.1a, resulting in 0.6M training samples. We

https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K
https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K


Task Example Instructions

Captioning
• Can you give me a brief description of this image <image>?
• Give me a short description of the picture <image>.
•What’s happening in the image <image> at a glance?

VQAv2
• Looking at the image <image>, can you quickly answer my question: <question>.
• After examining the image <image>, can you provide a brief response to the following question: <question>.
• Considering the image <image>, please provide a straightforward answer to <question>.

REC

• Locate the object described by <expr> in <image>. There’s just one specific object. Provide the outcome using the
[x0, y0, x1, y1] arrangement, showing the upper-left and lower-right box positions.
• Find the location of the item referenced in <expr> within <image>. We’re referring to a single item. Output the
result in [x0, y0, x1, y1] arrangement, showing the upper-left and lower-right bounding box corners.

RES

• Tell me where <expr> is located in <image>. There’s only one object. Provide the coordinates of 32 points on the
object’s outline. Present the result in [x0, y0, x1, y1, ..., x31, y31] format.
•What is <expr>’s location within <image>? There’s just one thing to consider. Share the coordinates of 32 uniform
points on the object’s edge. Show it in [x0, y0, x1, y1, ..., x31, y31] format.

GREC

• Recognize all objects indicated by <expr> in <image>. If no object is located, return an empty string. If one or
more objects are located, output the bounding boxes as [x0, y0, x1, y1], indicating the top-left and bottom-right corner
points. Use <bsep> to differentiate multiple bounding boxes.
• Pinpoint all items referenced by <expr> in <image>. If no object is detected, return an empty string. If one or more
target objects are found, provide the bounding boxes as [x0, y0, x1, y1], signifying the top-left and bottom-right corner
points. Use <bsep> to separate multiple bounding boxes.

GRES

• Find all items indicated by <expr> within <image>. If no target object is recognized, produce an empty string. If
one or more target objects are identified, output the coordinates of 32 points along each object’s contour. Display each
object mask in [x0, y0, x1, y1, ..., x31, y31] format. Use <msep> to distinguish multiple objects.
• Recognize all referenced items via <expr> in <image>. If no target object is found, generate an empty string. If
one or more target objects are found, present the coordinates of 32 points along each object’s edge. Show each object
mask in [x0, y0, x1, y1, ..., x31, y31] format. Utilize <msep> to distinguish multiple objects.

REG
• Please generate a unique description for the area <objs> displayed in the image <image>.
•What can you tell me about the area <objs> in the image <image> that sets it apart from the rest?
• How does the area <objs> in <image> stand out uniquely from the rest?

NLVR

• Between the left image <image> and the right image <image>, could you tell me if the answer to <question> is
True or False?
• Reviewing both the left image <image> and the right image <image>, would you reckon <question> is True or
False?
• Given the left image <image> and the right image <image>, can you answer my query: <question>? Respond in
True or False.

Spot
Captioning

• Please provide a holistic description of the image <image> and output the position for each mentioned object in the
format [x0, y0, x1, y1] representing top-right and bottom-left corners of the bounding box.
• Present a thorough insight into <image> and output every object’s position using [x0, y0, x1, y1], representing the
bounding box’s top-right and bottom-left corners.

CoSeg

• Find the common object in the input images <image>. There’s only one common object. Display each object’s mask
in [x0, y0, x1, y1, ..., x31, y31] format. Utilize <msep> to tell the masks apart.
• Locate the common thing in the input images <image>. Only one common thing will be there. Present each thing’s
mask in [x0, y0, x1, y1, ..., x31, y31] style. Use <msep> to differentiate the two masks.

AttCoSeg

• Find the two images which have a common object with matching attributes (shape, color, size, position), and segment
it in both images. Show object mask in [x0, y0, x1, y1, ..., x31, y31] style in both pictures. Make use of <msep> to tell
apart the two masks.
• Which input images have a mutual item with common attributes (shape, color, size, position)? Segment it in both
images. Display object mask using [x0, y0, x1, y1, ..., x31, y31] format in both images. Apply <msep> to differentiate
the two masks.

Table E.1. Examples of instructions for different tasks used by VistaLLM to convert them into instruction-following format.
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(a) Performance of REC on RefCOCO with varying training samples.
We report the performance in terms of precision at IoU = 0.5, i.e., the
prediction is deemed correct if its intersection over union (IoU) with the
ground-truth box is larger than 0.5.
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(b) Performance of RES on RefCOCO with varying number of train-
ing samples. We report the performance in terms of mIoU score.

Figure F.1. Ablation on the number of training samples on the
REC and RES task performance. We start with only RES and
REC datasets and gradually append datasets from other tasks using
proper instructions. Increasing the number of samples helps pro-
duce better performance, showing the usefulness of an end-to-end,
cohesive, and unified system where different tasks help improve
each other.

train VistaLLM for two epochs in stage 1, setting all hy-
perparameters unchanged. In this setup, we observe a REC
val score of 82.7%. Next, we add Visual Genome data to
the training corpus, which results in a total of 1M samples,
and re-train the model. Now, REC val accuracy increases
to 84.0%. Similarly, appending PointQA data in the train-
ing corpus increases the performance by 1.3%, and append-
ing LLaVa, Flickr, VQAv2, and COCO caption data yields
a gain of another 0.7%. Finally, the 6.8M training corpus
produces a final REC val accuracy of 88.1%. Hence, we ob-
serve that datasets from other image-level and region-level
tasks help improve the performance of the REC task, which
is the benefit of unified end-to-end training. We also see
similar observations for the RES in Figure F.1b. Such a phe-
nomenon also proves the scalability of our approach, which
is important for large-scale unified training.

Image encoder: Next, we ablate different image encoders
in Table F.1. We observe the best performance across most

Method Cap. RES Ref VCR iCoSeg NLVR
CIDEr val testA testB Q→ AR Av. J dev

VistaLLM-13B 128.4 76.2 77.7 73.9 79.1 95.1 80.8
w/ CLIP-ViT-L/14 127.9 75.5 76.3 72.1 79.3 94.7 80.2
w/ CLIP-ViT-L/14-336px 128.4 76.0 77.7 73.6 79.3 95.1 80.5
w/ CLIP-ViT-B/16 127.6 75.1 76.3 72.0 79.0 94.8 79.8

Table F.1. Ablation with different image encoders. By de-
fault, VistaLLM uses EVA-CLIP [31] pre-trained on LAION-
400M [29]. We observe a small performance drop when using
other image encoders.

tasks with EVA2 [31], while the CLIP-ViT-L/14-336px3 fol-
lows closely. We use EVA-CLIP in our final model be-
cause the QFormer [16] pre-trained in InstructBLIP [9] uses
EVA-CLIP, and it results in best compatibility with the
instruction-guided image tokenizer module in our system.

G. Error Analysis
Although VistaLLM learns impressive reasoning and
grounding capability across many different benchmarks,
there are still some cases where the model fails to identify
small and obscured objects, especially in cluttered environ-
ments. Figure G.1 shows seven such failure cases. In the
RES example, the object “teddy with arm up whose back
in near brown plaid thing” is hard to comprehend even for
humans, and thus, VistaLLM can not identify the correct
“teddy” the expression is referring to. In the REC example,
the “green hair tie” is tiny and only visible when zoomed
into the picture. VistaLLM fails to identify the girl who
is wearing it. In the GREC example, in low-light condi-
tions, the blue hoodie appears to be black, and VistaLLM
wrongly outputs a bounding box, whereas the ground truth
is no matching object. Similarly, in the NLVR2, GRES, and
POPE examples, VistaLLM fails to recognize hindered and
cluttered objects. We believe that more robust image fea-
tures will alleviate such failure cases in the future. More-
over, similar to many LLMs, VistaLLM has the potential to
generate harmful and unsafe outputs, which is also an active
research topic.

H. Additional Qualitative Results
We provide additional qualitative results from VistaLLM-
13B in Figures H.1, H.2, H.3, H.4, H.5, H.6, H.7, H.8, H.9,
and H.10. Moreover, we illustrate multi-round conversa-
tional ability of VistaLLM in Figure H.11.
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Figure G.1. Limitations of our method: Tiny and obscured objects, especially in cluttered and low-light environments, are hard to be
accurately grounded. VistaLLM fails in such tough samples, which are even difficult to comprehend by humans.

Figure H.1. Referring Expression Comprehension (REC) on RefCOCO, RefCOCO+ and RefCOCOg by VistaLLM-13B. REC aims
to generate a bounding box around a single object described by a referring expression.
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Figure H.2. Referring Expression Segmentation (RES) on RefCOCO, RefCOCO+ and RefCOCOg by VistaLLM-13B. RES aims to
segment a single object described by a referring expression.

Figure H.3. Generalized Referring Expression Comprehension (GREC) on gRefCOCO by VistaLLM-13B. GREC aims to identify
all objects described by a referring expression and draw bounding boxes around every referred object. GREC also contains no-target
expressions where the output is empty.

Figure H.4. Generalized Referring Expression Segmentation (GRES) on gRefCOCO by VistaLLM-13B. GRES aims to identify all
objects described by a referring expression and segment every referred object. GRES also contains no-target samples where the output is
empty.
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Generate a caption for the image.

Captioning

A large orange cat sleeps on
the hood of a car.

Briefly describe the image.

A guy swings a tennis racket
near a fence.

Can you give me a brief
description of this image?

A crowd of people flying kits
on a beach next to the ocean.

Give a short description of the
picture.

A computer sits on a desk
next to some shelves.

What's happening in the image at
a glance?

A small airplane landing in a
field at sunset.

Provide a short caption for the
image.

A couple walks through snow
with skiis and poles.

Figure H.5. Image Captioning on COCO by VistaLLM-13B, which aims to generate a short holistic description of the input image.

Figure H.6. VQAv2 by VistaLLM-13B, which aims to answer direct questions based on an input image.

LookTwice-QA (BoxQA)

The answer is 1. The answer is 1. The answer is 4.

The answer 1. The answer is 2. The answer is 1.

LookTwice-QA (PointQA)

How many of these
[222, 197, 241, 227]
are in the street?

How many of these
vehicles [84, 13, 187,
188] are there?

How many of birds
[139, 84, 231, 173]
are there?

How many
clocks [111, 107] are
there?

How many these
[164, 48] are in
photo?

How many of these
beings [226, 130] are
there?

Figure H.7. Box Question Answering (BoxQA) and Point Question Answering (PointQA) on LookTwice-QA by VistaLLM-13B.
Given a question about a specified region in the image, either mentioning a point or a box, this task needs to comprehend the area in the
context of the whole image to produce the correct answer.
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Figure H.8. Object Hallucination Evaluation of VistaLLM-13B on POPE benchmark. The task aims to input a query inquiring about
the existence of an object, and the model is expected to generate a response in the form of either “yes/no.”

That is True.

NLVR2

That is False. That is True.

There are more dogs in the
image on the right - True or
False?

Two laptops are facing the
same direction - True or False?

In at least one image, we can
see a human hand - True or
False?

That is False.

Right image shows balloons with
strings descending from them -
True or False?

Figure H.9. Natural Language for Visual Reasoning (NLVR2) by VistaLLM-13B. Given a pair of input images and a question, the
model must reason both images to produce the answer correctly.
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CoSeg
Find the common object in the input
images and segment it in each image. 

AttCoSeg
Find the common object with similar
attributes, and segment it in both the
images. 

The masks are [429, 122, 415, 158, ..., 191,
476, 153], [272, 151, 174, 183, …, 195, 269,
162].

The masks are [132, 20, 98, …, 20, 151, 22],
[126, 18, 95, …, 18, 152, 17].

Figure H.10. CoSeg and AttCoSeg by VistaLLM-13B. Given a set of input images, CoSeg aims to find and segment a common object
in every image. AttCoSeg is the more challenging scenario where the input images contains a common object with similar attributes.
VistaLLM is expected to segment the object in both images.

Figure H.11. Multi-round Conversational Ability of VistaLLM-13B. The images are taken from COCO. VistaLLM can address all
possible grounding and reasoning tasks across single and multiple input images.
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