
Federated Generalized Category Discovery

Supplementary Material

7. Dataset Splitting in Fed-GCD benchmark
To facilitate the study of Fed-GCD task, we re-organize
three commonly-used generic image classification datasets
(i.e., CIFAR-10, CIFAR-100 and ImageNet-100) and three
more challenging fine-grained image classification datasets
(i.e., CUB-200, Stanford Cars, and Oxford-IIIT Pet) to con-
struct a new Fed-GCD benchmark.

For each dataset, first, we sample a subset of half the
classes as “Old” categories in the original training set, and
50% of instances of each labeled class are drawn to form
the labeled set, and all the remaining data form the unla-
beled set. With the same rate of labeled-unlabeled splitting,
we split the original testing set into labeled and unlabeled
subsets for class number estimation and GCD testing on
server. Then, we further leverage the �-Dirichlet distribu-
tion to split the training set into NL subsets, where the NL

subsets are regarded as local datasets individually stored in
each client. The detailed statistics of all splits are elaborated
in Tab. 6.

8. Evaluation Protocols with Different Data
Heterogeneity

Due to the varying data distribution in different Fed-GCD
applications, we present two evaluation protocols to sepa-
rately simulate the normally heterogeneous (NH) and ex-
tremely heterogeneous (EH) scenarios by adjusting � in
Dirichlet distribution. Specifically, we set � = 0.2 and
� = 0.05 for NH and EH, respectively. The statistics of
the dataset splits under the two evaluation protocols are de-
scribed in Tab. 6, in which the NH setting exists few com-
mon classes but there is no labeled categories shared across
all clients in the EH setting. For each dataset, we learn a
global model in a decentralized training fashion. During
testing, we first estimate the number of the potential cate-
gories (i.e., k) in the non-overlapping test set by using the
labeled data stored on server. Then we calculate the maxi-
mum of clustering accuracy between the ground truth labels
and the label assignment with the estimated k over the set
of permutations via Hungarian algorithm. Last, we measure
the clustering accuracy for “All”, “Old” and “New” cate-
gories, respectively. All the statistics of the dataset splits
and evaluation protocols are described in Tab. 6.

9. Visualization of Learned GMMs.
To explore how the learned Global-Local GMMs work,
we visualize the T-SNE embeddings of the means of each
component of GMMs. We use circles with different color

to represent 7, 9,11,15 and 19 local GMM centers from
client 1,2,3,4 and 5, respectively. 9 global GMM cen-
ters are denoted by concentric circles. The number of
clusters in each client is automatically estimated by semi-
FINCH and the number of global clusters is estimated by
fully-unsupervised FINCH. Through analyzing the visual-
ization results, we find that 1) most global cluster centers
are located at the ground-truth centers without accessing to
raw data, which demonstrates the effectiveness of category
knowledge aggregation; 2) as for the blue-green cluster in
the purple dashed line, global cluster may server as a super-
class to provide distinct semantics for improving represen-
tation discriminability.

10. Experiments with Different Number of
Clients

In real-world federated generalized category discovery
(Fed-GCD), the number of local stations (clients) often
varies for different discovery tasks. For example, a biodi-
versity research center would like to explore comprehen-
sive global species distribution, which is inevitable to build
many clients all over the world. As indicated in exist-
ing federated learning studies, increasing the number of
clients may lead the global model to divergence, which
gives rise to a more severe challenge for training Fed-GCD
systems. To attempt to investigate this challenge, we first
evaluate “FedAvg + GCD”, “FedAvg + GCL”, “FedAvg
+ AGCL”, “Centralized-GCD” and “Centralized-GCL” on
the scenario of NL = 10. As summarized in Tab. 7,
the large number of clients results in a significant perfor-
mance degradation compared with centralized training, es-
pecially on CIFAR10 dataset. Moreover, our client seman-
tics association impacts by the increasing of the number of
clients, because large number of clients tend to generate
local extremely-heterogeneous GMMs. This further leads
uniformly-sampled features to be biased, which hinders ef-
fectively clustering and category aggregation due to lack of
prior knowledge for rectifying the biased distribution.

In short, the experiments with different values of NL =
5 are studied in the main text. The experiments with
NL = 10 are studied in Tab. 7. Comparing the centralized
training and FedAvg baseline, GCD suffers from a larger
performance drop than our GCL. Specifically, compared
to “Centralized-GCD”, “FedAvg + GCD” degrades perfor-
mance by 10.2%, 7.6%, and 9.8% on “All” categories. Our
GCL achieves a relatively robust performance by 8.5%, 6%,
and 8.8%.

Table 6. The statistics of our Fed-GCD benchmark. We simulate different degrees of data heterogeneity in real-world Fed-GCD scenarios
by adjusting the � of parametric Dirichlet distribution to split the local training sets among clients.

Dataset �
Client NL=5 Server

Labelled Classes # Unlabelled Classes # Classes Shared Across Labelled Unlabelled

Max Min Max Min all clients �2 clients # Classes # Images # Classes # Images

CIFAR10 0.2 5 4 10 9 2 5 5 2500 10 7500
0.05 5 1 10 4 0 4 5 2500 10 7500

CIFAR100 0.2 50 33 100 73 16 49 50 2500 100 7500
0.05 44 17 90 40 1 43 50 2500 100 7500

ImageNet-100 0.2 50 37 100 70 16 50 50 1250 100 3750
0.05 44 17 90 40 1 47 50 1250 100 3750

CUB-200 0.2 100 36 200 98 5 97 100 1430 200 4362
0.05 89 25 178 59 0 84 100 1430 200 4362

SCars 0.2 98 47 196 95 5 96 98 2001 196 6040
0.05 87 29 177 57 0 87 98 2001 196 6040

Pet 0.2 19 12 37 22 3 19 19 940 37 2729
0.05 18 5 43 16 0 17 19 940 37 2729

Local GMMs on Client 1 Local GMMs on Client 2 Local GMMs on Client 3

Local GMMs on Client 5Local GMMs on Client 4 Global GMMs

Figure 5. The visualization results on CIFAR10 training dataset. To explore how the learned Global-Local GMMs work, we visualize the
T-SNE embeddings of the means of each component of GMMs. We use circles with different color to represent 7, 9,11,15 and 19 local
GMM centers from client 1,2,3,4 and 5, respectively. 9 global GMM centers are denoted by concentric circles. The number of clusters
in each client is automatically estimated by semi-FINCH and the number of global clusters is estimated by fully-unsupervised FINCH.
Through analyzing the visualization results, we find that 1) most global cluster centers are located at the ground-truth centers without
accessing to raw data, which demonstrates the effectiveness of category knowledge aggregation; 2) as for the blue-green cluster
in the purple dashed line, global cluster may server as a super-class to provide distinct semantics for improving representation
discriminability.

11. Update of Global and Local GMMs

Details: 1) GMM Update. During client training, local
GMMs are updated by the gradient descent based on our
GCL losses. The global GMM is updated every commu-
nication round. 2) GMM components. We perform semi-
FINCH and leverage the accuracy of clustering labeled data

as a metric to estimate the number of categories in local
data. Based on the clustering results, local GMMs are ini-
tialized with the estimated means, variants and component
numbers (i,e, the number of categories). Similarly, we uni-
formly sample N S features from each component of each
local GMM, to generate a new feature set. Then, we execute
unsupervised FINCH to cluster these features for creating

Setup
NH setting (� = 0.05)

CIFAR10 CIFAR100 ImageNet-100
All Old New All Old New All Old New

Centralized-GCD 83.6 85.8 82.0 54.9 56.1 53.7 72.1 80.7 67.5
Centralized-GCL 86.7 86.7 86.7 58.5 57.2 58.1 76.1 83.7 68.4
FedAvg + GCD 63.4 60.0 66.7 47.3 48.3 45.6 62.3 70.8 60.1
FedAvg + GCL 68.2 64.2 70.1 52.5 53.9 51.0 67.3 74.5 60.8
FedAvg + AGCL 68.1 63.8 70.3 52.2 53.6 52.4 67.5 74.8 61.1

Table 7. Results on generic datasets in the scenario of NL = 10. Comparing the centralized training and FedAvg baseline, GCD suffers
from larger performance drop than our GCL. Specifically, comparing to “Centralized-GCD”, “FedAvg + GCD” degrades performance by
10.2%, 7.6% and 9.8% on “All” categories. Our GCL achieves a relatively robust performance.

the global GMM. For example, in CUB-200, at the begin-
ning, the estimated class numbers in 5 clients are 63, 84,
117, 183 and 125, respectively, and, we estimate 96 compo-
nents for the global GMM.

12. Algorithm of Federated AGCL framework.
To clarify the pipeline of our AGCL framework. We elabo-
rate the algorithm tabel in Algorithm 1.

Algorithm 1: Algorithm Pipeline of Federated
AGCL.

Input: Local Models ⇥L, Local Data DL and
Server Data DG.

Output: Global Model ⇥G.
for r = 1 in [1,max round] do

for n = 1 in [1, NL] do
Extract feature and perform semi-FINCH

(Algorithm 3) to initialize GL
n ;

end
Clients upload GL to server;
Server executes Client Semantics Association
with unsupervised FINCH (Algorithm 2) to
generate GG;

Server distributes GG to each client;
for n = 1 in [1, NL] do

for i = 1 in [1,max iteration] do
Sample mini-batches from DL

n ;
Calculate overall optimization objective

by Ln;
Update ⇥L

n and GL
n by SGD;

end
end

end
Extract feature and Leverage labeled data in DG to
estimate the number of classes in unlabeled data;

Calculate clustering accuracy for “ALL”, “Old” and
“New” categories;

13. Algorithm of Unsupervised FINCH.
During client semantic association, we utilize unsupervised
FINCH to generate Global GMM. Here, we elaborate the
algorithm table in Algorithm 2. The adjacent matrix of NN
graph is established via:

A(i, j) =

(
1 if j = 1

i or 1
j = i or 1

i = 1
j ,

0 otherwise,
(10)

where 1 2 RN⇥1 is first neighbors integer vector.
Then, based on above equation. We follow the pipeline

in Algorithm 2 to perform unsupervised parameter-free
FINCH clustering. We use the second-level partition on
server aggregation in all our experiments.

14. Algorithm of Semi-FINCH.
To clarify the pipeline of our AGCL framework. We elabo-
rate the algorithm tabel in Algorithm 3. Similarly, the NN
graph is given by:

A(i, j) =

8
>>><

>>>:

1 if i and j are unlabeled, j = 1
i or ,

1
j = i or 1

i = 1
j ,

1 if i and j are labeled, yi = yj ,

0 otherwise,

(11)

where yi is the ground-truth category label of i instance.
In short, we first extract features and calculate pair-wise

similarities, and search the 1st-neighbor of each sample
based on the similarities. Next, we force one random la-
beled sample that belongs to the same category as its 1st-
neighbor and then apply FINCH algorithm to yield multi-
level clustering results. Later, we leverage the clustering ac-
curacy of labeled samples as the index to select the cluster-
ing level. Finally, we choose the level that achieve highest
clustering accuracy as the estimated results to calculate the
cluster-specific mean and covariance to initialize the learn-
able GMM.

Algorithm 2: Algorithm Pipeline of unsupervised
FINCH.

Input: Sample set S = {1, 2, · · · , N},S 2 RN⇥d,
where N is total number of samples and
each sample point is represented by
d-dimension feature vector.

Output: Set of Partitions P = {�1,�2, · · · ,�P },
where each partition �i =
{C1, C2, · · · , C�i |C�i � C�i+1 , 8i 2 P}
is a valid clustering of S .

The unsupervised FINCH Algorithm:
1: Compute first neighbors integer vector
1 2 RN⇥1 via exact distance or fast approximate
nearest neighbor methods.

2: Given 1 get first partition �1 with C�1 clusters
via Equation 1.C�1 is the total number of clusters
in partition �1.

while there are at least two clusters in �i do
3: Given input data S and its partition �i,
compute cluster means (average of all data
vectors in that cluster). Prepare new data
matrix M = {1, 2, · · · , C�i}, where M�i ⇥ d.

4: Compute first neighbors integer vector
1 2 RC�i⇥1 of points in M .

5: Given 1 get partition �M of �i via Equation
1, where �M � �i.

if �M has one cluster then
break

else
Update cluster labels in �i : �M ! �i

end
end

The detailed semi-algorithm is summarized in Algo-
rithm 3.

Algorithm 3: Algorithm Pipeline of semi-FINCH.
Input: Sample set S = {1, 2, · · · , N},S 2 RN⇥d,

where N is total number of samples and
each sample point is represneted by
d-dimension feature vector.

Output: Set of Partitions P = {�1,�2, · · · ,�P },
where each partition �i =
{C1, C2, · · · , C�i |C�i � C�i+1 , 8i 2 P}
is a valid clustering of S .

The semi-FINCH Algorithm:
1: Compute first neighbors integer vector
1 2 RN⇥1 via exact distance or fast approximate
nearest neighbor methods.

2: Given 1 get first partition �1 with C�1 clusters
via Eq. (1). C�1 is the total number of clusters in
partition �1.

while there are at least two clusters in �i do
3: Given input data S and its partition �i,
compute cluster means (average of all data
vectors in that cluster). Prepare new data
matrix M = {1, 2, · · · , C�i}, where M�i ⇥ d.

4: Compute first neighbors integer vector
1 2 RC�i⇥1 of points in M .

5: Given 1 get partition �M of �i via Equation
1, where �M � �i.

if �M has one cluster then
break

else
Update cluster labels in �i : �M ! �i

end
end

