Supplementary Material for M^3 -UDA: A New Benchmark for Unsupervised Domain Adaptive Fetal Cardiac Structure Detection

Bin Pu^{1*} Liwen Wang^{2*} Jiewen Yang^{1*} Guannan He³ Xingbo Dong² Shengli Li⁴ Ying Tan⁴ Ming Chen⁵ Zhe Jin² Kenli Li^{6†} Xiaomeng Li^{1†}
¹ The Hong Kong University of Science and Technology.
² Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging, Anhui University, China. ³ Sichuan Provincial Maternity and Child Health Care Hospital.
⁴ Shenzhen Maternity and Child Healthcare Hospital. ⁵ Harbin Red Cross Central Hospital.⁶ Hunan University. {eebinpu, eexmli}@ust.hk,jyangcu@connect.ust.hk,{jinzhe,xingbo.dong}@ahu.edu.cn,lkl@hnu.edu.cn

Effects of backbone and detector on our approach

Table 1 shows the effect of different backbones as the feature extractor and various detection heads on the adaptation task.

Algorithm Pipeline

Based on our description of the proposed M^3 -UDA in Section 3 method, the following algorithm description is presented for the HM, SM, and GM components.

Hospital $1 \rightarrow 2$											
Detection head	Feature extractor	RA	RV	LV	VS	SP	LA	CR	DAO	RIB	mAP (%)
Faster-RCNN	VGG-16	76.40	85.31	78.20	77.32	74.73	85.43	75.52	79.71	72.93	78.39
	ResNet-50	65.31	62.66	63.16	52.93	63.36	63.12	58.57	59.31	65.73	61.57
raster-KCININ	ResNet-101	70.64	61.52	63.16	66.58	66.72	62.34	75.31	68.64	68.92	67.09
	ResNet-152	79.18	65.87	66.13	66.32	74.84	67.26	72.21	64.42	67.48	69.31
	VGG-16	58.56	46.50	52.43	48.99	56.56	42.98	49.52	54.23	35.76	49.52
FCOS	ResNet-50	81.09	65.29	70.54	67.12	77.56	69.33	79.28	77.86	77.06	73.90
FC05	ResNet-101	79.94	69.77	72.84	71.73	81.02	77.99	81.70	77.99	78.28	76.81
	ResNet-152	83.79	77.28	80.98	76.68	83.30	80.07	84.34	79.96	82.24	80.96

Table 1. Compar	e different d	letection l	heads and	feature e	xtractors of	on 4CC.

Algorithm 1 Histogram Matching (HM)

Output: $X^{t'}$: The X^t after the Histogram Matching with X^s . **Input:** $X^{s,t}$: Input images from source and target domain. 1: $P^{s/t} = \{p_i^{s/t}\}_{i=0}^k \leftarrow$: Get the normalized histogram of X_s and X_t ; 2: $\sigma := \arg \min \sum_{i=1}^k \mathbf{d}(M(P^s), P^t) \leftarrow$: Conduct the optimal mapping $\sigma(\cdot)$; 3: $X^{t'} = \sigma(X^t) \leftarrow$: conduct the histogram matching via optimal mapping $\sigma(\cdot)$; 4: **return** $X^{t'}$; Equation (1) in paper

*Equal Contribution.

[†]Corresponding author.

Algorithm 2 Sub-structure Matching (SM)

Output: \mathcal{L}_{SM} : The graph matching loss of SM; \mathcal{L}_{sup} : The loss of detection result. **Input:** $X^{s,t}$: Input images from source and target domain; Y^s : The ground truth of the source domain; $\mathcal{L}_{bce}(\cdot)$:Binary cross-entropy Loss; $\mathcal{L}_{iou}(\cdot)$: Intersection over Union Loss; $Encoder(\cdot)$: The parameter shared feature extractor; $Decoder(\cdot)$: The parameter shared detection head for generating the detection result; 1: $f^{s,t} \leftarrow \text{Encoder}(X^{s,t})$ 2: $\hat{Y}^{s,t} \leftarrow \text{Decoder}(f^{s,t})$ 3: $\mathcal{L}_{sup} \leftarrow \mathcal{L}_{bce}(\hat{Y}^s, Y^s) + \mathcal{L}_{iou}(\hat{Y}^s, Y^s)$ (1). Sub-structure Relation Construction. 4: $\{c^{s,t}\} \leftarrow$ Get the location of different organs according to the corresponding position of each organ from Y^s and \hat{Y}^t . 5: $A^{s/t} = \begin{pmatrix} \theta(c_0, c_0) & \cdots & \theta(c_0, c_j) \\ \vdots & \vdots & \vdots \\ \theta(c_i, c_0) & \cdots & \theta(c_i, c_j) \end{pmatrix}^{s/t} \leftarrow \text{Generate adjacency matrix according to } c^{s/t}.$ Equation (2) in paper (2). Sub-structure Matching. 6: $\mathcal{L}_{SM} = \sum_{i=0}^{n} \sum_{j=0}^{n} ||A_{i,j}^s - A_{i,j}^t||_2.$ 7: return $\mathcal{L}_{SM}, \mathcal{L}_{sup}$ Equation (3) in paper

Algorithm 3 Global-structure Matching (GM)

Output: \mathcal{L}_{GM} : The graph matching loss of GM; \mathcal{L}_{cls} : The classification loss on node;

Input: $X^{s,t}$: Input images from source and target domain;

 Y^s : The ground truth of the source domain;

 $Encoder(\cdot)$: The parameter shared feature extractor;

 $Decoder(\cdot)$: The parameter shared detection head for prediction of the detection result;

 $GNN(\cdot)$: The graph convolutional neural network to transform the visual graph;

 W_q , W_k and W_v : The learnable weight of three independent projection layers that project the graph to different latent space as query, key and value vector;

1: $f^{s,t} \leftarrow \text{Encoder}(X^{s,t})$

2: $\hat{Y}^{s,t} \leftarrow \text{Decoder}(f^{s,t})$

(1).Organ Feature Extraction and Visual Node Sampling.

3: sample total M visual nodes from $F^{s/t}$ as $\mathcal{V}^{s/t} \in \mathbb{R}^{M \times d}$, according to the corresponding position of each organ from the Y^s and \hat{Y}^t ,

4: compute the edge $\mathcal{E}^{s/t} \in \mathbb{R}^{M \times M}$ that represents the connectivity between each node of organs in $\mathcal{V}^{s/t}$ by using spectral clustering.

	(2). Global Graphical Representation Construction.	
5:	$\mathcal{G}^{s/t} = \operatorname{GNN}(\{\mathcal{V}, \mathcal{E}\}^{s/t}) \in \mathbb{R}^{M imes d}.$	Equation (4) in paper
	(3). Organ Morphology Knowledge Transfer.	
6:	$\dot{\mathcal{G}}^{s/t} = \lambda \cdot \left(W_q \mathcal{G}^{s/t} (W_k \mathcal{G})^T \right) W_v (\mathcal{G}^s \oplus \mathcal{G}^t) \in \mathbb{R}^{M imes d}$	Equation (5) in paper
	(4). Graph Matching and Node Classification.	
	$\mathcal{L}_{ ext{GM}} = \sum_{i=0}^{d} \sum_{j=0}^{M} \left\ \dot{\mathcal{G}}_{i,j}^{s}, \dot{\mathcal{G}}_{i,\pi(j)}^{t} ight\ _{2}^{2}.$	Equation (6) in paper
8:	$\mathcal{L}_{ ext{cls}} = ext{CE}(\dot{\mathcal{G}}^s,Y^s) + ext{CE}(\dot{\mathcal{G}}^t,\hat{Y}^t)$	Equation (7) in paper
9:	return $\mathcal{L}_{GM}, \mathcal{L}_{cls}$	