
Three Pillars improving Vision Foundation Model Distillation for Lidar

Supplementary Material

Gilles Puy1 Spyros Gidaris1 Alexandre Boulch1 Oriane Siméoni1

Corentin Sautier1,3 Patrick Pérez2 Andrei Bursuc1 Renaud Marlet1,3

1valeo.ai, Paris, France 2Kyutai, Paris, France
3LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

In this supplementary material, we provide detailed ro-
bustness results in Appendix A, give training details in Ap-
pendix B, visually inspect the properties of the ScaLR fea-
ture space in Appendix C, present preliminary results for
object detection in Appendix D, and discuss some limita-
tions of our work in Appendix E.

A. Robustness

We present in Tab. 9 a detailed version of Tab. 6 with the
mIoU% attained for the eight different types of corruptions
considered in [31].

We observe that WI-768 pretrained on multiple datasets
is second or third for each type of corruption, except for mo-
tion blur, which permits it to achieve the best overall mCE%
and mRR%.

B. Training Details

B.1. PandaSet

PandaSet [69] is made of scans acquired in San Francisco
and along El Camino Real from Palo Alto to San Mateo. We
use the scans collected in San Francisco as train set and the
rest as validation set. We also separate the scans collected
with the Pandar64 lidar from the scans collected with the
PandarGT and treat them as different datasets. Finally, we
merge the fine-grained original classes into 17 classes sim-
ilar to those used in nuScenes and SemanticKITTI. These
classes are: road, traffic sign, barrier, pedestrian, vegeta-
tion, road marking, sidewalk, manmade, traffic cone, car,
motorcycle, truck, bus, bicycle, other vehicle, ground, and
driveway.

B.2. Pretraining

Shared setting. The point tokens (see [51] for details)
in the WaffleIron backbones are computed using 16 near-
est neighbors and the following point features: lidar in-
tensity, 3D Cartesian xyz coordinates, radius/range. The
field-of-view in the spatial mixing blocks is restricted to
[�64 m,+64 m] along the x and y axes and [�8 m,+8 m]
along the z axis; we use a grid of resolution 50 cm.

We pretrain the WaffleIron backbones using AdamW
[40] with a weight decay of 3 ⇥ 10�4 and a learning rate
linearly increasing from 0 to 0.002, then decreasing to 10�5

following a cosine schedule. The number of iterations or
epochs corresponding to that maximum learning rate, as
well as the total number of iterations or epochs, are de-
scribed below, depending on the setting.

Mono-dataset setting. The mono-dataset setting is the
setting used in Secs. 3.3, 4.3, 4.4, 4.7. We pretrain the
WaffleIron backbones by distilling 2D features during 19
epochs, with a batch size of 16. The learning rate reaches
its maximum value after 2 epochs. The MinkUNet back-
bone is pretrained following SLidR [58] protocol with the
following adjustments: we use a batch size of 12, an initial
learning rate of 1.5 — the optimizer used in SLidR is SGD
— and 25 epochs.

Multi-dataset setting. The multi-dataset setting is the
setting used in Secs. 4.5, 4.6. The pretraining dataset con-
tains: 28,130 scans for nuScenes, 19,130 scans for Se-
manticKITTI, 3,920 scans for PandaSet-64 and 3,920 scans
for PandaSet-GT. We pretrain WI-256 by distilling 2D fea-
tures with a batch size of 16 during 19 epochs on nuScenes,
28 epochs on SemanticKITTI, 136 epochs on PandaSet-64
or PandaSet-GT, 11 epochs on nuScenes & SemanticKITTI,
10 epochs on the mix of all datasets. The number of epochs
is adjusted so that the backbone is pretrained for approxi-
mately the same number of iterations. For WI-768, as the
available GPU memory is not sufficient for some batches,
we decrease the batch size to 8 and pretrain for 49 epochs
on nuScenes and 25 epochs on the mix of all datasets. The
learning rate reaches its maximum value after 3500 itera-
tions in all cases.

2D teacher. All the results presented in this paper with the
DINO-pretrained ViT-S/8 are obtained by distilling the keys
at the last attention layer. This choice was guided by the fact
that the last keys have properties that enable the design of
unsupervised object discovery algorithms [62, 63, 66]. The
results obtained with the DINOv2-pretrained ViTs are ob-
tained by distilling the features before the last normalization
layer.

Method 2D Back. 3D Back. Pretrain.
dataset

mCE% # mRR% " Corruptions (mIoU% ")

Fog Wet Snow Motion Beam Cross Echo Sensor

– – Cylinder3D [84] – 105.6 78.1 61.4 71.0 58.4 56.0 64.2 45.4 60.0 43.0

– – 2DPASS [71] – 98.6 75.2 64.5 76.8 54.5 62.0 67.8 34.4 63.2 45.8

– – SPVCNN [64] – 97.5 75.1 55.9 74.0 42.0 74.6 69.0 28.1 65.0 51.6

– – GFNet [52] – 92.6 83.3 69.6 75.5 71.8 59.4 64.5 66.8 61.9 42.3

– – WI-768 – 90.9 80.6 72.2 78.0 66.6 55.2 70.4 48.7 64.7 52.4

PPKT [38] ResNet-50 MinkUNet nuScenes 105.6 76.1 64.0 72.2 59.1 57.2 63.9 36.3 60.6 39.6

SLidR [58] ResNet-50 MinkUNet nuScenes 106.1 76.0 65.4 72.3 56.0 56.1 62.9 41.9 61.2 38.9

Seal [39] ResNet-50 MinkUNet nuScenes 92.6 83.1 72.7 74.3 66.2 66.1 66.0 57.4 59.9 39.9

ScaLR (ours) ViT-L/14 WI-768 nuScenes 89.1 83.7 70.8 77.2 67.1 55.9 70.0 65.7 63.9 51.1
ScaLR (ours) ViT-L/14 WI-768 Multiple 87.4 83.8 72.2 77.9 69.1 57.4 70.1 62.7 64.0 52.2

Table 9. Robustness to corruptions. The evaluation is conducted on nuScenes-C from the Robo3D benchmark [31]. We report the
mCE%, mRR%, and the mIoU% attained for the eight corruptions, i.e., fog, wet ground, snow, motion blur, beam missing, crosstalk
(among multiple sensors), incomplete echo, and cross-sensor (beam and point dropping). The scores in italic are obtained from [31, 39].
PPKT, SLidR and Seal use a MoCov2 ResNet-50. We use DINOv2 ViT-L/14.

Multi-teacher distillation. Let us denote the output fea-
ture dimension of both image teachers by F (1)

2D and F (2)
2D ,

respectively. On the image side, we `2-normalize the pixel
features extracted by each teacher and concatenate them.
On the point cloud side, the head 3D is a 2-layer MLP
where the hidden linear layer has size 2 ⇥ F3D and is fol-
lowed by a Layer Norm and a ReLU. The final linear layer
of the MLP has size F (1)

2D +F (2)
2D to match the size of the con-

catenated 2D features. These point features are then split
into two parts of size F (1)

2D and F (2)
2D , respectively. Each part

is `2-normalized independently. The normalized features
are then re-concatenated. Finally, we distill the knowledge
of the 2D features by applying Eq. (1) directly on the fea-
tures of size F (1)

2D + F (2)
2D .

B.3. Linear probing

The linear head is trained with a batch size of 8, using
AdamW with a weight decay of 3⇥10�3. The learning rate
linearly increases from 0 to 0.001 during the first 2 epochs
and then decreases to 10�5 following a cosine schedule.
We use 20 epochs on nuScenes and SemanticKITTI, and
50 epochs on PandaSet-64 and PandaSet-GT.

B.4. Finetuning

For finetuning the pretrained WaffleIron backbones, we use
a batch size of 8, using AdamW without weight decay. The
learning rate linearly increases from 0 to 0.002 during the
first tenth of epochs and then decreases to 0 following a
cosine schedule. During finetuning, we also use stochastic
depth [27] with a layer drop probability of 0.2. We finetune
the WaffleIron backbones for 45 epochs and a layer-wise
learning rate decay parameter of 0.95 when using 1% and
10% of available data, and for 25 epochs and a layer decay
parameter of 0.99 when all annotated data are available.

C. Visual Inspection

We provide a visualization of the features computed by a
ScaLR-pretrained �3D backbone in Fig. 2. We use our WI-
768 pretrained on nuScenes, SemanticKITTI, PandaSet-64
and PandaSet-GT. In this figure, the features are projected
onto the space spanned by their 3 principal components and
used as RGB values to color the point clouds. Note that the
PCA is done independently on each scan, which explains
why the colors are not consistent from one scan to another.

We notice that the feature space of our pretrained back-
bone is correctly structured as we can distinguish rather eas-
ily the main urban constructions and objects in these figures.
For example, we notice that the points belonging to road and
sidewalk have similar colors (per scan) on nuScenes and Se-
manticKITTI. On PandaSet-64 and PandaSet-GT, we also
notice that the cars have similar colors (per scan) as well.
Let us mention that the road on PandaSet-GT scans appears
in a less uniform color than on the other datasets. It could be
explained by a higher density of points on the road for this
lidar, which might lead to more subtle differences between
features after distillation and/or PCA.

We continue our visual inspection of the distilled fea-
tures by presenting feature similarity map with respect to
class prototypes in Fig. 3. The features are extracted at the
output of �3D and are `2-normalized. The similarity maps
are then obtained as follows. For each scan, we use the
ground-truth labels to extract the point features of a class
of interest (car, pedestrian, road or sidewalk). We average
all the corresponding features to obtain a single class proto-
type for that class. Finally, we compute the similarity of all
point features with respect to this class prototype. This is a
similar procedure as the one used in Fig. 1 but using a mean
feature instead of a single point feature.

In all cases, we notice that the most similar features to
a class prototype belongs to the corresponding class, as ex-
pected. This is another indication that the feature space is
well structured where: the features of a same semantic class
are close to each other; the features of two different seman-
tic class are well separated. Nevertheless, when inspect-
ing closely the similarity map, we notice sometimes some
“leakage” around the objects of interest. This phenomenon
is mostly visible for the class pedestrian. We believe that
these artifacts are due to errors when projecting the points
onto the camera plane, which affects the boundary of the
objects. Finally, we remark as well that the similarity maps
are less sharp on PandaSet-64 and PandaSet-GT than on
nuScenes and SemanticKITTI, likely because of the small
number of scans available in PandaSet.

D. Preliminary Results on Object Detection

Our results so far have shown the quality of our ScaLR fea-
tures for semantic segmentation. In this section, we evalu-
ate if these features can be useful for another task: object
detection.

As WaffleIron is a backbone originally designed for se-
mantic segmentation [51], we adapted it to object detection
by modifying PointRCNN [60] to accept WaffleIron instead
of PointNet++. Note that a similar approach was used in
[58] but with MinkUNet instead of WaffleIron. We then
trained this new object detection backbone on KITTI detec-
tion [20] using the WI-256 backbone pretrained on all four
considered datasets, with ScaLR or with a non-pretrained
WI-256. This experiment was conducted using the Open-
PCDet toolbox [65] using the default configuration file of
PointRCNN but using a batch size of 2 (with a maximum
learning rate of 0.001) to allow training on one NVIDIA
GeForce RTX 2080 Ti.

The results in Tab. 10 show that our ScaLR pretrain-
ing method significantly improves object detection results
too. Let us nevertheless mention that our object detection
backbone is non-standard (modified PointRCNN) and that
some modifications of ScaLR will be necessary if one wants
to pretrain better-performing backbones such as, e.g., PV-
RCNN [61], for which it is common practice to pretrain the
backbone after the BEV projection modules (see, e.g., [6]),
where we loose direct mapping between point and pixel fea-
tures, making Eq. (1) not directly applicable.

E. Limitations

Our study in Sec. 3.3 shows that the linear probing mIoU
has a standard deviation around 1.0 percentage point be-
tween different pretrainings. Some possibilities to reduce
these small fluctuations might be to explore longer pretrain-
ing schedules, or re-increase the number of loaded images
per scan (from 1 to 6).

AP@R40 (%) Car Pedestrian Cyclist
No pretrain. 71.1 49.0 49.1
ScaLR (ours) 83.0 58.0 71.8

Table 10. Object detection. Performance of our modified PointR-
CNN on KITTI detection [20]. We compare the performance
reached by a non-pretrained backbone and a backbone pretrained
using ScaLR.

Beides, our work raises the possibility of replicating un-
desirable biases present in the large pretrained 2D mod-
els used for distillation. These models are known to har-
bor problematic biases related, e.g., to geographic location,
gender, skin tone, and age. When distilling these 2D vi-
sion models into 3D lidar models, there is a potential for
these biases to be amplified or mirrored. Our resulting li-
dar models may exhibit varying performance across differ-
ent geographical regions, influenced by how these regions
are represented in the training datasets of the original 2D
models and in the 2D-to-3D distillation training data. For
real-world applications of this distillation strategy, practi-
tioners are expected to be mindful about the 2D foundation
model used and the nature of the data it was trained upon
(e.g., potential biases, privacy breaches, licenses, etc.)

nu
Sc

en
es

Se
m

an
tic

K
IT

TI
Pa

nd
aS

et
-6

4
Pa

nd
aS

et
-G

T

Figure 2. Distilled feature visualizations. We project the features at the output of �3D into a three-dimensional space by PCA. The
projected value serves as RGB value to color the point clouds, i.e., the first, second and third components are used as the red, green and
blue channels, respectively. Note that the PCA is done independently for each scan, which explains why the colors are not consistent
from one scan to another. In this figure, we used the WI-768 pretrained on nuScenes, SemanticKITTI, PandaSet-64 and PandaSet-GT with
ScaLR.

Car Pedestrian Road Sidewalk

nu
Sc

en
es

-S
im

nu
Sc

en
es

-L
ab

el
K

IT
TI

-S
im

K
IT

TI
-L

ab
el

Pa
n.

64
-S

im
Pa

n.
64

-L
ab

el
Pa

n.
G

T
-S

im
Pa

n.
G

T
-L

ab
el

Figure 3. Similarity map with class prototype. For each scan, we use the ground-truth labels (presented on even rows) of four classes
(car, pedestrian, road, sidewalk) to compute a class prototype (mean feature of the point belonging to the considered class). We then
compute the feature similarity map (presented on odd rows) with respect to that class prototype. Color goes from blue to red for low and
high values.

	. Introduction
	. Related Work
	. Scalable Distillation Strategy
	. Motivation and Principle
	. Formal Description
	. Analysis of our Distillation Strategy

	. Experiments
	. Three Pillars
	. Implementation Details
	. Comparison of Distillation Methods
	. 2D Backbone Choice & 3D Backbone Scale
	. Pretraining on Multiple Datasets
	. Properties of Distilled Features
	. Pretraining with Multiple Teachers

	. Conclusion
	. Robustness
	. Training Details
	. PandaSet
	. Pretraining
	. Linear probing
	. Finetuning

	. Visual Inspection
	. Preliminary Results on Object Detection
	. Limitations

