HOISDF: Constraining 3D Hand-Object Pose Estimation with Global Signed
Distance Fields

Supplementary Material

We first provide additional details on the architecture de-
sign of HOISDF with respect to the image feature extrac-
tion and hand pose regression. Then, we provide additional
details for the ablation experiments. Finally, we conduct ad-
ditional experiments to assess the effectiveness of HOISDF.

1. Architecture details
1.1. Image Feature Extraction

Here, we detail the regressed objectives and the correspond-
ing losses for the image backbone mentioned in Sec. 3.1.
Following standard practice [19, 33, 49], we regress 2D
heatmaps and hand/object segmentation masks as additional
2D predictions. Specifically, for simplicity, we regress a
single-channel 2D hand keypoints heatmap Hy, [19]. To ob-
tain the ground-truth heatmap Hj, we convolve all the 2D
joint locations with a 2D Gaussian kernel and sum them in
the same channel. Furthermore, we regress the hand and
object segmentation maps (Hy and O;) as two additional
channels. To learn H;,, H,, and O,, we minimize the loss

Limg = [H}, — Ha|| + CE(H,, HY) + CE(05, 07), (10)
where CE represents the cross-entropy loss, and HY and O
are obtained by rendering the ground-truth 3D hand and ob-
ject meshes.

1.2. Hand pose regression

In Sec. 3.2, we show that the field-guided pose regression
module uses the point-wise features augmented by the field
information to predict the hand object poses. Here, we give
more details about the hand pose estimation component.

As is shown in Figure 5, with the set of hand query point
features {f}, };c(0,n,,) illustrated in Sec. 3.2.2 and the set of
cross-hand query point features {fih}ie(o, N, illustrated in
Sec. 3.2.3, we conduct point-wise attention SA between all
the point features. The resulting features from {f}, };c(o,x,)
are denoted as enhanced hand point features {f’ Y i€(0,Nn)s
while the resulting features from {f’,, };c(o,x,) are dropped
since the object clues are already passed to {ffgh}ie(o, Ni)
through SA (illustrated in Sec. 3.2.4).

We then conduct cross-attention between {f.;, }ic(0,n,)
and learnable queries {q'};c(0,17), Where the last query is
used to regress MANO shape parameters 3 € R'0 and
the rest queries are used to regress MANO pose parameters
{6" € R%}ic(0.16) (Eq. 8).
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Figure 5. Details of hand pose regression of HOISDF.

Meanwhile, similarly to Hampali et al. [19], we also
regress the intermediate hand pose objective to guide the
final predictions. However, since the features {f’, } already
contains rich 3D information, we directly regress 3D hand
joints instead of 2D joints as in Hampali et al.[19] and use
the query points as dense local regressors [31, 51]. Specif-
ically, we use a joint offset regression head to predict the
offsets {0, }ic(0,3,),j(0,n,) from a hand query point pj, to
all the pose joints {h*)}, where j represents the pose joint
index and N; is the number of the hand pose joints. We
use a smooth-L1 loss [43] to supervise the learning of the
offsets. However, if pj, is far away from the pose joint h*?,

the predicted ozj could be inaccurate. Therefore, instead of
regressing all the joint offsets, we use a joint visibility term
to determine if p, is close to h*/. We empirically set the
joint class V*Zj to one if the distance between pj, and h is
smaller than 4 cm, and to zero otherwise. The joint visibil-
ity information is not accessible during inference. There-
fore, we introduce a joint classification head to learn it. To
train it, we minimize the cross entropy loss CE between the
predicted joint visibility v;’ and the ground truth v* hj Dur-
ing inference, the predicted joint visibility {V }z is sent to
the SoftMax function [3] to weigh the joint predictions. Al-



together, this yields the training loss

N Nj
Lot = Z Z SmoothL1(p} + ozj,h*;) v
i
+CEWVY v, ()
2. Ablation Details
2.1. Comparison of different intermediate repre-
sentations

As discussed in Sec. 4.4, we replace the 3D field learning
module (Sec. 3.1) with 2D keypoint learning, 2D segmen-
tation learning, and 3D mesh learning. Here, we give more
details for the model designs of using other intermediate
representations. Specifically, for 2D keypoint learning, we
borrow the model design of Hampali et al. [19] to regress
identity-aware but part-agnostic keypoints in the intermedi-
ate step to serve as query points. For 2D segmentation learn-
ing, we use the pixel locations with segmentation scores
larger than 0.3 as query points. The keypoint confidence and
the segmentation score are used to multiply with the query
point features separately to mimic our feature regularization
(Sec. 3.2.2) in the above two baselines. For 3D mesh learn-
ing, we follow Tse et al. [47] to regress MANO parameters
in the intermediate stage and use the MANO hand vertices
to serve as hand query points. Meanwhile, we regress the
object rotation and translation in the intermediate stage to
obtain object vertices as object query points.

We find that the SDF representation outperforms the 2D
representations by a large margin, especially in MJE and
object metrics that exploit more global information (Ta-
ble 5). We attribute this to the 2D intermediate representa-
tions gathering less 3D shape information in the initial step.
Furthermore, we observe that using 3D vertices as interme-
diate representation performs better than 2D representations
(Table 5). This supports our claim that implicit 3D shape
representations are better than explicit 3D meshes.

2.2. Comparison to other SDF-based methods

The key difference between HOISDF and other SDF-based
methods [12, 13, 54] is the role of the SDF module. Previ-
ous methods rely on the SDF module to reconstruct fine-
grained hand-object surfaces. Predicting the SDF is the
endpoint of the models. The resulting SDF values are used
to generate meshes directly. By contrast, HOISDF shows
that SDFs are a great intermediate representation for hand-
object pose estimation (Table 5). The extracted SDF values
are sent to the field-guided pose regression module to pro-
vide 3D global shape information for hand-object pose es-
timation. In comparison, we obtained better pose estimates
than previous SOTA SDF methods [12, 13] (Table 2).

Due to different roles, the design choices of the SDF
module in HOISDF and other SDF methods thus differ. To

Chamfer Distance 0.304 0.309
F-Score Imm 0.174 0.168
F-Score Smm 0.797 0.803

Chamfer Distance 1.60 2.78
F-Score Imm 0.434 - 0.360 - -
F-Score Smm 0.703 0.595
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Figure 6. Comparisons between HOISDF’s intermediate re-
sults and gSDF’s [13] final results on DexYCB testset. The SDF
module in HOISDF cares more about global plausibility, while the
one in gSDF cares more about fine-grained surface reconstruction.

improve the quality of the reconstructed surfaces, previous
methods [12, 13, 54] add intermediate pose regression mod-
ules. The generated hand-object poses are used to pre-align
the local parts with the canonical space. The SDF module
can thus focus on fine-grained details without being dis-
turbed by hand-object poses. However, we aim to let the
SDF module encode global pose information to guide the
subsequent pose regression. We have evidence that adding
a pose regression module before will convey unreliable pose
information to the input of the SDF module and will pollute
the global information captured by the SDF module (e.g.,
the little finger of gSDF’s hand mesh in Figure 6). Mean-
while, additional pose regression and canonicalization steps
would also decrease the running speed of HOISDF and
make the module unable to be end-to-end trained [13, 54].

To support our design choices, we directly use the inter-
mediate SDF module to reconstruct hand-object meshes and
compare them with gSDF’s [13] final outputs (Figure 06)).
Note that HOISDF also yields 3D hand and object meshes
in the final outputs and obtains SOTA results (Table 3 and
Figure 4). Regarding our intermediate SDF module, we ex-
pect to have worse results since mesh reconstruction is not
the goal of our SDF module. Surprisingly, however, it per-
forms similarly to gSDF on hand metrics (Fig. 6). We at-
tribute this to the fact that our SDF module captures better
global shape information. Therefore, even though the mesh
reconstruction quality is lower, the overall distance to the
GT hand mesh is acceptable. In comparison, the poses of
the meshes produced by gSDF are influenced by its pose
regression module and might yield large pose errors. As ex-
pected, our intermediate SDF module performs worse than
¢SDF on object metrics because of worse surface recon-
struction. However, the general pose of our intermediate
object reconstruction remains satisfactory. Note that gSDF
is trained for 1600 epochs, while HOISDF is only trained
for 40. We also replace our SDF module with gSDF ini-
tialized by their trained weights. The results (MJE: 11.2,
PAMIE: 5.83, OCE: 19.6, MCE: 29.4, ADD-S: 14.3) show
that despite more computational complexity, gSDF is less
effective as an intermediate module.
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Figure 7. Hand object performance curve according to the
numbers of sampled query points on DexYCB testset. HOISDF
is robust with a wide range of sampled query points under different
discretization sizes.

2.3. Ablations for the Field-guided Pose Regression
Module

As discussed in Sec. 4.5, we verify the effectiveness of the
components in our field-guided pose regression module by
comparing each component with multiple variants. Here,
we show the detailed designs of the variants.

Effectiveness of the field-informed point sampling. As
discussed in Sec. 3.2.1, we sample query points close to
the hand/object surfaces for the subsequent pose estima-
tion. During inference, we sample query points with the
smallest absolute distances to achieve the same goal. Here,
we compare to three alternative point sampling strategies.
The first one is to sample query points randomly in the 3D
spaces. The second one is to sample query points inside
the hand object meshes and sample points with the small-
est signed distances during inference. The final one still
samples points close to the hand-object surfaces. However,
during the inference, we follow Zhou et al. [56] to com-
pute the gradient of the SDF module according to a certain
sampled query point. Then we multiply the gradient with
the signed distance and use them as an offset to move the
original sampled query point. This moves the query point
even closer to the surfaces. Random sampling and signed
distance sampling perform much worse than our absolute
distance sampling, because the sampled points cannot re-
flect the general shapes of the hand and object and query
irrelevant image features that will harm the pose estima-
tion (Table 7). Applying field gradient to obtain the query
points has almost the same performance as ours. However,
computing the gradients for all the query points takes much
more time compared to directly sampling points based on
absolute distances. Therefore, in comparison our sampling
strategy is the most efficient one.

Effectiveness of field-based point feature augmenta-
tion. As described in Sec. 3.2.2, we convert the point signed
distance into a volume density and then multiply it with
the point image feature to augment the feature. Since the
cross hand object interaction (Sec. 3.2.3) also uses the fea-
ture augmentation and will influence the performance, we
remove the cross field attention and implement three vari-
ants to verify the effectiveness of the feature augmentation

(Table 8). Removing the SDF feature augmentation (w/o
SDF regularization), concatenating rather than multiplying
the volume density with the image feature (w density con-
catenation), and concatenating the distance value with the
image feature (w distance concatenation). Removing the
SDF regularization yields an accuracy drop. Directly con-
catenating the distance values makes the model struggle to
extract useful information. Directly concatenating the den-
sity value boosts the performance compared to w/o SDF
regularization. However, since it only has one dimension,
it is hard to influence the whole feature representation.

Effectiveness of hand-object feature enhancement.
As discussed in Sec. 3.2.3, we augment the object query
point features with the cross-hand signed distances. The
resulting cross-hand query point features are then used to
conduct cross-attention with the original hand query point
features to enhance the hand feature representation (Eqn. 7).
Here, we conduct ablations to verify the effectiveness of our
hand-object feature enhancement with three variants (Table
9): Removing the cross feature enhancement completely
(denoted as w/o cross feature enhancement), cross atten-
tion with cross target image features f;,,, without feature
augmentation (denoted as w cross image feature), cross at-
tention with cross target features fj, and f, (denoted as w
cross target feature). Compared to w/o cross feature en-
hancement, both hand and object benefit from the cross
target cues and improve the pose estimation performance.
The variant W cross image feature only obtains very few
improvements for the object pose estimation while has a
side influence on the hand pose estimation. The object usu-
ally takes a larger space than the hand in the image. The
various object features from different pixel locations will
mislead the hand pose estimation without the guidance of
the cross-hand signed distances. W cross target feature ob-
tains the worst results for both hand and object pose estima-
tions since the features are still augmented with the original
signed distances instead of the cross-target signed distances,
which are not helpful in transferring clues to the other tar-
get.

Robustness with various pose regression components.
As mentioned in Sec. 3.2.5, we use learnable queries to
conduct cross-attention with enhanced hand query point
features {f’,} and regress the MANO parameters. Note,
however, that the strong hand pose estimation performance
is mainly because of the field-based feature enhancement
rather than the design of the hand pose regressor. To
verify that, we also implement three other hand pose re-
gressors (Table 10). The first one removes the interme-
diate hand joint regression. The second one removes the
cross-attention layer and directly uses the intermediate hand
joints as the final result. The last one only uses the cross-
attention layer to regress the MANO shape parameters. The
MANO pose parameters are inferred from the intermediate



Methods HOISDF (ours) Wang et al. [49]

Metrics in [mm] OCE MCE ADD-S OCE MCE ADD-S
002_master_chef_can  15.9  20.2 10.2 21.8 255 12.8
003_cracker_box 294 402 18.5 333 378 17.8
004 _sugar_box 171 29.7 14.2 246 323 14.7
005_tomato_soup_can ~ 17.9  20.8 10.3 294 317 15.0
006_mustard_bottle 136 18.1 9.1 204 245 11.1
007_tuna_fish_can 154 173 8.9 23.6 245 12.5
008_pudding_box 133 195 9.5 21.0 245 12.1
009_gelatin_box 14.8 208 9.8 254 283 13.9
010_potted_meat_can ~ 13.9  19.8 10.5 247 267 12.4
011_banana 195 417 20.6 28.1 422 21.0
019_pitcher_base 279 395 18.8 373 444 21.5
021_bleach_cleanser 19.0 409 18.6 344 39.7 17.8
024_bowl 17.7 215 12.0 28.5 302 16.1
025_mug 165 179 9.5 27.1 273 12.3
035_power_drill 20.5 312 16.1 26.8 308 14.5
036-wood_block 279 353 17.1 358 464 21.7
037 _scissors 254 49.0 21.3 335 478 22.8
040_large_marker 149 242 12.9 25.1 318 18.3
052_extra_large_clamp  23.7 483 224 312 458 22.7
061_foam_brick 137 163 8.0 243 251 11.4
Mean 184 274 133 273 326 15.9

Table 11. Per-object performance on DexYCB testset. Our
HOISDF can outperform Wang et al. [49] for most of the objects,
demonstrating HOISDF is robust to various objects.

Methods HOISDF (ours) Wang et al. [49]

Metrics in [mm] OME ADD-S OME ADD-S
006_mustard_bottle 42.6 11.8 36.5 16.3
010_potted_meat_can 39.7 14.5 48.6 22.1
021_bleach_cleanser 29.5 15.1 44.7 20.7
Mean 35.5 14.4 455 20.8

Table 12. Per-object performance on HO3Dv2 testset. HOISDF
can outperform Wang et al. [49] on HO3Dv2 dataset as well.

hand joints using inverse kinematics adopted from Chen et
al. [13]. We can observe removing the intermediate joint re-
gression only drops very little on the performances. Remov-
ing the MANO regression drops slightly more in PAMJE
since there is no constraint for the hand shape in the in-
termediate joints regression. To improve that, we add the
MANO shape regression in the last variant and use the in-
verse kinematics to compute MANO pose parameters from
the intermediate joints, which can are passed into MANO
network to regress the hand mesh. We can see the perfor-
mance is almost comparable with our current regressor.

Comparable performance with some variants. Here,
we want to emphasize that the design logic is the most im-
portant contribution of each component in our field learning
module. The comparable variants share the same key ideas
with our module design. For example, Field gradient also
samples points near the surface (Table 7), while w density
concatenation also introduces distance-to-density [38] for
SDF information encoding (Table 8). They were (our) in-
termediate designs to the final proposed module and lacked
either efficiency or performance.

Robustness with different numbers of sampled
points. As mentioned in Sec. 4.2, we sample N2 /n;, = 600
hand query points and N2/n, = 200 object query points

with a discretization size of N, = 64. Here, we sample
different numbers of query points with different discretiza-
tion sizes to verify that HOISDF is robust to a wide range of
point sampling numbers (Fig. 7). We found that HOISDF
is robust for reasonable numbers of query points. When in-
creasing the number of query points for a discretization size
of 48 one will sample many points that are far away from
the hand/object, which results in large errors.

3. Inference Speed

Benefiting from the efficient way of using the field informa-
tion in our field-guided pose regression module, our model
can achieve real-time inference speed (30.7 FPS) on a sin-
gle NVIDIA TITAN RTX GPU, which includes 10.6ms for
image feature extraction, 11.5ms for query points sampling,
and 10.9ms for pose attention and regression.

4. Additional results
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Figure 8. Qualitative comparisons on the HO3Dv2 test set with
Lin et al. [33] and Wang et al. [49]. HOISDF can produce better
hand-object poses under various hand object interactions.

4.1. Qualitative comparison on HO3Dv2 dataset

We visualize qualitative comparison with SOTA methods
([33, 49]) on the DexYCB dataset in Sec. 4.3. To further
verify the effectiveness of HOISDF, we also show the qual-
itative comparison with the SOTA methods ([33, 49]) on the
HO3Dv2 dataset (Figure 8). We can observe consistent im-
provements in HOISDF over the SOTA methods.

4.2. Per-object performances

We compare HOISDF with Wang et al.[49] that has SOTA
object performances for every object category on DexYCB
test set (Table 11) and HO3Dv?2 test set (Table 12). We
can observe that HOISDF outperforms Wang et al. [49] on
almost all the object categories and all the metrics, which
proves the effectiveness of our model for various objects.
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Figure 9. Failure case of HOISDF. Physical plausibility could
be improved. For severely occluded scenarios, the predicted hand
and object meshes might intersect with each other.

4.3. Failure cases and limitations

Although HOISDF obtains the SOTA results, it still has
limitations. For severely occluded scenarios, the predicted
hand and object meshes might intersect with each other
(Figure 9). Therefore, some physical constraints could be
modeled during hand object pose estimation to further im-
prove the performance.
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