
UniGS: Unified Representation for Image Generation and Segmentation
Supplementary File

This supplementary material document provides more
visualization results and training/inference details on Multi-
class multi-region inpainting, image synthesis, referring
segmentation, and entity segmentation. The supplementary
material is organized as follows:
• Training/inference details on four tasks.
• More visualization results, including an example illustra-

tion of decoding colormap and the generation results of
three tasks.
Also, please check the recorded video on our project

page to obtain a brief description of our paper.

1. Training/inference Details
Multi-class multi-region inpainting In our research, we
train our model on the COCO and Open-Images dataset, ini-
tializing it with the stable diffusion inpainting model v1.5.
For each image, we sample a maximum of four objects and
then. Based on the ground truth mask, we have two schemes
to make the coarse mask: 1. simulate a more coarse mask
using the curve. 2. direct. The process follows in Algo-
rithm 1 that is used in Paint-by-Example. This coarse mask
is then cropped out from the original image. The cropped
image and coarse mask are concatenated and fed into a
UNet, with the expected output being an inpainted image
and a separate color mask. Under this setting, the model
was trained for 48 epochs, resulting in the development of
our model. During inference, we sample a maximum of
three objects. Similarly, we sample out coarse masks. And
utilize randomly initialized noise for DDIM denoising, a to-
tal of 200 steps.

We have compared the number of parameters and the in-
ference speed with the original stable diffusion inpainting
model in Table 1. We have only added a few channels to
the input and output, keeping the parameter count almost
consistent with that of stable diffusion. The inference speed
also remains nearly the same. Without incurring additional
computational costs, we have achieved better output results.

Image Synthesis During image synthesis, we use a col-
ormap as our conditional input instead of an image, and the
input for the coarse mask is a mask entirely filled with ones,

Method Parameters Speed

Stable Diffusion 859.54 M 14.48
UniGS (Ours) 859.56 M 14.40

Table 1. Comparison of parameters and inference speed be-
tween Stable Diffusion and our UniGS. The inference speed is
tested by the seconds per image. We use the DDIM sampling strat-
egy for both methods. We do not use any accelerating techniques
for a fair comparison. And we note that those techniques used in
Stable Diffusion also work in our UniGS.

indicating that the area of interest is the entire image. We
conducted a full training over 48 epochs on the COCO and
Open-Images dataset, with the maximum number of entity
samples set to four. The inference process is consistent with
the training but with a maximum sample number of three.
The input includes a text condition, colormap, and an all-
one coarse mask to produce the synthesized image.

Referring segmentation In the task of referring segmen-
tation, the method of sampling coarse mask remains con-
sistent with the inpainting approach, but the coarse mask
region is not excised from the original image. Instead, the
original image and the coarse mask are concatenated and
then jointly input into the model. Similarly, the model
was trained on the COCO and Open-Images dataset for 48
epochs to yield the final model. The original image, coarse
mask, and text prompt are input during inference. Post-
processing is then performed on the output colormap to ob-
tain the final segmentation mask

Entity segmentation For entity segmentation, unpro-
cessed original images are input along with an all-one
coarse mask, indicating that the entire image area is sub-
ject to segmentation. During training, we no longer sample
entities but directly use all entities from the COCO and En-
titySeg datasets, encoding them into a colormap as input for
the framework. In inference, the output colormap under-
goes post-processing, but the background is not removed.
Instead, all clusters are retained as individual entities.

1

Algorithm 1 Pseudocode (Python-like) of the Coarse Mask Sampling Method: Curve and Bounding Box

prob=random.uniform(0, 1)
random or bounding box mask

if prob<self.arbitrary_mask_percent:
mask_img = Image.new(’RGB’, (W, H), (255, 255, 255))
bbox_mask=copy.copy(bbox)
extended_bbox_mask=copy.copy(extended_bbox)
top_nodes = np.asfortranarray([

[bbox_mask[0], (bbox_mask[0]+bbox_mask[2])/2 , bbox_mask[2]],
[bbox_mask[1], extended_bbox_mask[1], bbox_mask[1]],

])
down_nodes = np.asfortranarray([

[bbox_mask[2],(bbox_mask[0]+bbox_mask[2])/2 , bbox_mask[0]],
[bbox_mask[3], extended_bbox_mask[3], bbox_mask[3]],

])
left_nodes = np.asfortranarray([

[bbox_mask[0],extended_bbox_mask[0] , bbox_mask[0]],
[bbox_mask[3], (bbox_mask[1]+bbox_mask[3])/2, bbox_mask[1]],

])
right_nodes = np.asfortranarray([

[bbox_mask[2],extended_bbox_mask[2] , bbox_mask[2]],
[bbox_mask[1], (bbox_mask[1]+bbox_mask[3])/2, bbox_mask[3]],

])
top_curve = bezier.Curve(top_nodes,degree=2)
right_curve = bezier.Curve(right_nodes,degree=2)
down_curve = bezier.Curve(down_nodes,degree=2)
left_curve = bezier.Curve(left_nodes,degree=2)
curve_list=[top_curve,right_curve,down_curve,left_curve]
pt_list=[]
random_width=5
for curve in curve_list:

x_list=[]
y_list=[]
for i in range(1,19):

if (curve.evaluate(i*0.05)[0][0]) not in x_list and (curve.evaluate(i*0.05)[1][0] not in y_list):
pt_list.append((curve.evaluate(i*0.05)[0][0]+random.randint(-random_width,random_width),curve.

evaluate(i*0.05)[1][0]+random.randint(-random_width,random_width)))
x_list.append(curve.evaluate(i*0.05)[0][0])
y_list.append(curve.evaluate(i*0.05)[1][0])

mask_img_draw=ImageDraw.Draw(mask_img)
mask_img_draw.polygon(pt_list,fill=(0,0,0))
mask_tensor=get_tensor(normalize=False, toTensor=True)(mask_img)[0].unsqueeze(0)

else:
mask_img=np.zeros((H,W))
mask_img[extended_bbox[1]:extended_bbox[3],extended_bbox[0]:extended_bbox[2]]=1
mask_img=Image.fromarray(mask_img)
mask_tensor=1-get_tensor(normalize=False, toTensor=True)(mask_img)

One-to-Many Joint Model We train our single model for
the four tasks within the COCO, Open-Images, and En-
titySeg datasets. Unlike training a single model, we add
the task embedding for the multi-task training. Further-
more, the sample ratios of four tasks, including multi-class
multi-region inpainting, image synthesis, referring segmen-
tation, and entity segmentation, are 0.3, 0.3, 0.2, and 0.2,
respectively. We train the single model for multi-tasks in 96
epochs. Finally, this model performs comparably to each
model of a single task, indicating the great potential of our
unified representation for image generation and segmenta-
tion.

2. More Visualization Results

Progressive Dichotomy Module. Figure 1 shows an ex-
ample of our progressive dichotomy module to decode the
generated colormap into several explicit entity masks. We
can see that our decoding process does not require assigning

cluster numbers in a depth-first search manner.

Visualization Results Figure 2, 3 and 4 shows more visu-
alization results of multi-class multi-region inpainting and
image synthesis with our UniGS framework. And Figure 5
shows the entity segmentation results of our UniGS.

2.06

105.5

11.38

36.4

10.8

1.6

4.2

7.0

7.1

10.1

5.5

à Stop

Figure 1. An example illustration of our progressive dichotomy
module at each clustering iteration. The red color indicates the
average distance to its cluster center for all the pixels in the cluster.

Referring
Image

Masked
Image

UniGS
(image)

Stable
Diffusion

UniGS
(mask)

Figure 2. More visualization results of our UniGS in multi-class multi-region inpainting.

Referring
Image

Input
Mask

Output
Image

Figure 3. More visualization results of our UniGS in the real world. We generate the coarse masks used in inpainting by brush strokes
from Gradio. We identified some interesting observations, particularly the appearance of shadows from the third to sixth columns.

Referring
Image

Color
Mask

Stable
Diffusion

Control
Net

T2I
Adapter

UniGS
(Ours)

Figure 4. More visualization results of our UniGS in image synthesis

Figure 5. More visualization results of our UniGS in Entity Segmentation.

	. Training/inference Details
	. More Visualization Results

