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Figure 1. The pipeline of dataset construction. Head and tail audios as well as the corresponding transcripts are fed into the pipeline to
generate a smooth and high quality transition.

1. Overview

To demonstrate the effectiveness of our data construction
techniques and the proposed method of emotion transition
co-speech gesture generation, we further elaborate on the
detailed data synthesis and vision perception in the supple-
mentary material. The additional content is illustrated in the
following folds:
• Dataset Construction
• Architecture Details
• Additional Experiments

2. Dataset Construction

We will release our newly collected the TED-ETrans and
BEAT-ETrans datasets in the future. The overall pipeline
of our approach to constructing the dataset is displayed in
Figure 1. The details involve the following steps:

Segmentation and Emotion Labeling : We first divide
the previously aligned single emotion co-speech gesture
datasets [2, 5] into head and tail segments by splitting the
original audio into 4-second clips. Heads are identified
as clips with neutral emotions, while tails contain various
emotions. This segmentation was achieved using either the
pre-annotated dataset’s emotion labels or an emotion classi-
fier. Both head and tail segments originated from the same
speaker, ensuring vocal tone consistency.
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Figure 2. Details of emotion transition distribution of our newly
collected TED-ETrans and BEAT-ETrans datasets. All the transi-
tions start from the neutral emotional speeches.

Emotion Transition : The head segments consistently
exhibit neutral emotions, while the tails display a vari-
ety of emotional states. In our approach, we intention-
ally avoided pairing segments with extreme emotional shifts
(e.g., happiness-to-anger, happiness-to-sadness). Such
drastic transitions are infrequent in natural speech and not
only result in less smooth transitions in both speech and
textual contexts but also risk introducing a long-tail phe-
nomenon in the dataset. By avoiding these extremes, we
aimed to maintain a more balanced and realistic dataset dis-
tribution as shown in Figure 2.

Transcript Generation with GPT-4 : We engage GPT-4
to generate transitional text between the head and tail clips.
The GPT-4 is instructed to create a smooth transition in both



content and emotion, producing about 5-10 words. For each
data sample, GPT-4 generated three candidate transitions,
each accompanied by a confidence score, returned in JSON
format. We finally discard samples with low confidence or
excessive length.

Synthesis of Transition Speech : We employ the Audi-
oLDM2 [3, 4] model for audio inpainting, ensuring natural
and time-controlled speech synthesis. Speaker embeddings
are extracted using SpeechBrain’s ECAPA-TDNN to mea-
sure the consistency of the transition speech with the head
and tail segments. Samples with significant speaker embed-
ding discrepancies are excluded. We ensure the head, tail,
and synthesized parts share the same speaker’s tone, main-
taining consistency.

Quality Control through ASR : We utilize Whisper [6]
for automatic speech recognition (ASR) on transition
speech. ASR transcripts are compared to ground truth,
and samples with the word error rate of over 0.125 are re-
synthesized for better accuracy and clarity.

Final Note : We observe that GPT-3.5 often produces
similar candidates, lacking diversity, thus our preference for
GPT-4. Our final prompt structure, designed to guide the
model in generating contextually and emotionally coherent
transitions, is presented below:

Prompt

As a skilled playwright, you’ve been assigned a
task to fill in the blanks. You will be given two
sentences (in a talk) with distinct emotions, and
your job is to provide a transition of **10
words** to ensure a natural emotional and
semantic flow between them. For each blank,
you should return three potential options along
with your confidence level in your responses in
JSON format. **DO NOT** return anything
else.
JSON template:
{

”opt1”: option 1,
”opt2”: option 2,
”opt3”: option 3,
”confi”: confidence score scale from 1 to 5,

}

Input:\n
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Figure 3. Details of our proposed keyframe sampling strategy.
Once we obtain the pre-trained keyframe encoder, we leverage
it to model the conditional distribution, producing diverse initial
postures as the reference.

We first define GPT-4 prompt and evaluate sentence
completeness confidence scores three times to select the
best fit for semantic clarity. Moreover, we add a manual re-
view on each transcript to drop the unnatural sentences, in-
cluding 30 English native speakers’ evaluation of grammati-
cal correctness/ logical coherence/ clarity of expression. We
are unable to extract the transitional segments directly from
lengthy videos due to the absence of speech recognizers for
identifying multiple emotions within a single audio. Thus,
we leverage the advanced LLM GPT-4 combined with the
manual effort to construct the natural and smooth emotion
transition datasets.

3. Architecture Details
Audio Encoder. Inspired by [1, 5, 9], the backbone of our
audio encoder Ea is constructed as ResNetSE34. We adopt
three stacking blocks and leverage the 2D-convolution-
based header to map the dimension of audio features to be
N × 512, where N is the temporal dimension.

Transformer-based backbone. We leverage the diversi-
fied authority initial postures to interact with the extracted
audio features. In particular, we leverage the pose reference
Q to match the key features K and value features V in the
transformer-based encoder via three times Multi-Head At-
tention (MHA) [7], expressed as:

MultiHead(Q,K, V ) = softmax(
QK√

d
)V, (1)

where d is a normalization constant.

Pose-based Emotion Classifier. In our emotion mixture
strategy, we pre-train a pose-based emotion classifier for
providing emotional weak supervision on the generated
transition gestures. Specifically, the emotion classifier di-
rectly leverages the transformer backbone, the same as the



pipeline encoder, to extract the sequential pose features.
Then, we utilize an MLP-based classifier header on the
pose gestures to produce the final emotion categories. In
the BEAT-ETrans dataset, our pre-trained emotion classi-
fier achieves 99.92% accuracy. In the TED-ETrans dataset,
the accuracy is 99.26%.

Keyframe Sampler. We design a simple but effective
VAE-based keyframe sampler to produce authority initial
postures as motion cues, thereby facilitating the diversifi-
cation of the generated 3D co-speech gestures. As shown
in Figure 3, the keyframe sampler aims to model the con-
ditional distribution upon the given randomly selected pos-
tures. In the pre-training phase, the posterior distribution
is denoted as the latent variable from the encoded chunk-
wise gestures. The prior distribution of this latent variable
is modeled by the keyframe encoder. The training goal in
this phase is to minimize the distance between the posterior
distribution and the prior one via KL divergence represented
as KL(· ∥ ·) in Figure 3. Meanwhile, we exploit the L1 loss
to constrain the reconstructed chunk-wise gestures.

4. Additional Experiments

4.1. Metric Calculation Details

Inspired by [5, 8], we take FGD to evaluate whether the gen-
erated gestures maintain realism with the ground truth ones
in the perceptive of distribution. Conventionally, the feature
extractor of FGD is calculated to embed overall sequential
gestures into latent space and then utilize a decoder for re-
construction. However, since we do not have the ground
truth of the transition gestures, we newly pre-train the fea-
ture extractor with the transition length L. In the inference
stage, FGDh+t is calculated by averaging the distances be-
tween five randomly selected chunks of length L from the
head/tail and GT, respectively. Similarly, FGDtrans is com-
puted as the average value between the distance of transition
and five randomly selected chunks of head/tail. We will re-
lease the code of our pipeline and evaluation metrics in
the future.

4.2. Additional Ablation Study Experiments

As reported in Table 1, after adding the adversarial loss,
FGDtrans and BC achieve better results. This highly
aligns with our motivation to ensure the temporal smooth-
ness of the generated results. Inspired by BEAT, we lever-
age a pre-trained posture-based emotion classifier to eval-
uate the emotion transition effect in both datasets. As re-
ported in Table 2, our method attains the best performance
on emotion transition, which highly aligns with our visual-
ization.

Table 1. Ablation study on the adversarial loss in TED-ETrans
dataset. w/o represents without adversarial loss in experiments.

Methods FGDh+t ↓ FGDtrans ↓ BC ↑ Diversity ↑

Ours w/o 15.31 32.72 0.802 79.64±4.58

Ours 12.19 23.54 0.906 93.79±2.53

Table 2. Comparison in emotion transition effect. EmoACC
means whether the gestures in the head/tail represent the corre-
sponding emotions.

Models BEAT-ETrans TED-ETrans

FGDh+t↓ FGDtrans↓ BC↑ EmoACC↑ FGDh+t↓ FGDtrans↓ BC↑ EmoACC↑

Seq2Seq 40.95 47.93 0.141 57.50 29.60 49.47 0.265 56.20
S2G 25.56 37.04 0.671 60.69 18.16 41.63 0.824 58.88
Trimodal 14.09 42.50 0.764 69.81 21.06 33.20 0.758 63.82
CAMN 9.03 27.53 0.794 72.87 19.28 41.04 0.785 74.55
HA2G 7.28 25.79 0.779 73.98 16.72 40.38 0.787 80.74
DiffGesture 6.68 25.03 0.788 80.72 18.69 25.13 0.818 81.17

Ours 4.42 18.84 0.881 83.57 12.19 23.54 0.906 85.61

4.3. Additional Visualization Results

Here, we provide more visual results of our methods com-
pared with other counterparts in the demo video. Mean-
while, to fully demonstrate the effectiveness of our pro-
posed components in the ablation study, we visualize vital
frames of the synthesized gestures. As illustrated in Figure
4 and Figure 5, we can clearly observe that all the combina-
tions of our proposed components have positive impacts on
the generated results.
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Figure 4. Visual comparisons of ablation study on our newly collected TED-ETrans dataset. We show the key frames of the generated
motions given the emotion transition of human speech. Best view on screen.
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Figure 5. Visual comparisons of ablation study on our newly collected BEAT-ETrans dataset. We show the key frames of the generated
motions given the emotion transition of human speech. Best view on screen.
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