
3DGS-Avatar: Animatable Avatars via Deformable 3D Gaussian Splatting

Supplementary Material

A. Loss Definition
In Sec. 4.4 of the main paper we describe our loss term which can be formulated as follows:

L = λl1Ll1 + λpercLperc + λmaskLmask + λskinLskin + λisoposLisopos + λisocovLisocov (1)

We describe how each loss term is defined below:

RGB Loss: We use an l1 loss to compute pixel-wise error and a perceptual loss to provide robustness to local misalign-
ments, which is critical for the monocular setup. Following [9], we optimize LPIPS as the perceptual loss with VGG as
the backbone. However, unlike NeRF-based methods which train on random ray samples, we render the whole image via
rasterization and thus do not require patch sampling. For computational efficiency, we crop the tight enclosing bounding box
with the ground truth mask and compute the VGG-based LPIPS as our perceptual loss.

Mask Loss: To boost the convergence of 3D Gaussian positions, we use an explicit mask loss. For each pixel p, we compute
the opacity value Op by summing up the sample weights in the rendering equation Eq. (3) in the main paper , namely:
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i
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j=1
(1− α′
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We thus supervise it with the ground truth foreground mask via an l1 loss. Experiments show that the l1 loss provides faster
convergence than the Binary Cross Entropy (BCE) loss.

Skinning Loss: We leverage SMPL prior by sampling 1024 points Xskin on the surface of the canonical SMPL mesh and
regularizing the forward skinning network with corresponding skinning weights w interpolated with barycentric coordinates.

Lskin =
1

|Xskin|
∑

xskin∈Xskin

||fθr (xskin)−w||2 (3)

As-isometric-as-possible Loss: Please refer to the second paragraph of Sec. 4.4 in the main paper for details.
We set λl1 = 1, λperc = 0.01, λmask = 0.1, λisopos = 1, λisocov = 100 in all experiments. For λskin, we set it to 10 for

the first 1k iterations for fast convergence to a reasonable skinning field, then decreased to 0.1 for soft regularization.

B. Implementation Details
We initialize the canonical 3D Gaussians with N = 50k random samples on the SMPL mesh surface in canonical pose.
During optimization, we follow the same strategy from [4] to densify and prune the 3D Gaussians, using the view-space
position gradients derived from the transformed Gaussians Go in the observation space as the criterion for densification.

We then describe the network architectures of our learned neural components. For the forward skinning network fθr ,
we use an MLP with 4 hidden layers of 128 dimensions which takes xc ∈ R3 with no positional encoding and outputs a
25-dimension vector. This vector is further propagated through a hierarchical softmax layer that is aware of the tree structure
of the human skeleton to obtain the skinning weights w that sum up to 1. To normalize the coordinates in the canonical space,
we proportionally pad the bounding box enclosing the canonical SMPL mesh instead of using the same length in all axes as
in [8]. This allows us to use a lower resolution in the flat z-dimension of the human body.

For the non-rigid deformation network fθnr
, the 3D position xd is normalized with the aforementioned bounding box

and first encoded into representative features with a multi-level hash grid, whose parameters are defined in Tab. 1. The
concatenation of the hash grid features and the pose latent code Zp then go through a shallow MLP with 3 hidden layers of
128 dimensions to decode pose-dependent local deformation.

The details of our color network structure Fθc are well elaborated in Sec. 4.3 of the main paper. For frames outside the
training set, we follow [8] and use the latent code of the last frame in the training sequence.



Parameter Value
Number of levels 16

Feature dimension per level 2
Hash table size 216

Coarsest resolution 16
Finest resolution 2048

Table 1. Hash table parameters.

To reduce overfitting, we add noise to the pose and viewing direction input. Specifically, we add a noise drawn from the
normal distribution N (0, 0.1) to the SMPL pose parameters θ with a probability of p = 0.5 during training. The viewing
direction d is first canonicalized to the canonical space and then augmented with a random rotation derived from uniformly
sampled roll, pitch, and yaw degrees ∈ [0, 45). Adding noise to training signals helps the model to better generalize to novel
poses and views.

Our model is trained for a total of 15k iterations on the ZJU-MoCap dataset in 30 minutes and 30k iterations on Peo-
pleSnapshot in 45 minutes on a single NVIDIA RTX 3090 GPU. We use Adam [5] to optimize our model and the per-frame
latent codes with hyperparameters β1 = 0.9 and β2 = 0.999. The learning rate of 3D Gaussians is exactly the same as the
original implementation from [4]. We set the learning rate for forward skinning network θr to 1× 10−4 and 1× 10−3 for all
the others. An exponential learning rate scheduler is employed to gradually decrease the learning rate by a factor of 0.1 on
neural networks. We also apply a weight decay with a weight of 0.05 to the per-frame latent codes.

Following prior works [9, 10], we split the training stage and learn the whole model in a coarse-to-fine manner. In the first
1k iterations, we freeze everything except the forward skinning network fθr to learn a coarse skinning field with Lskin and
prevent the noisy gradients from moving the 3D Gaussians away from the initialization. We then enable optimization on the
3D Gaussians after 1k steps. To decouple rigid and non-rigid motion, we start to optimize the non-rigid deformation network
fθnr

after 3k iterations. Lastly, we turn on pose correction after 5k iterations.

C. Implementation Details for Baselines

In this section, we elaborate on the implementation details of baselines used for comparison to our proposed method, i.e.
NeuralBody [7], HumanNeRF [9], ARAH [8], Instant-NVR [2], MonoHuman [11] and InstantAvatar [3].

C.1. NeuralBody

For the quantitative evaluation, we use the results of NeuralBody [7] reported in HumanNeRF [9] which follows the same
data split.

C.2. HumanNeRF

We use pre-trained models provided by the official code repository1 for both quantitative and qualitative evaluation.

C.3. ARAH

For the quantitative evaluation, we use the same setup as HumanNeRF (i.e. same data split with a reduced image size of
512 × 512) and train the models using the code from official code repository2 for 500 epochs. All other hyperparameters
remain unchanged. The trained models are then used for qualitative evaluation and out-of-distribution pose animation.

C.4. Instant-NVR

For quantitative and qualitative evaluation, we retrain the models using the code from official code repository3 on the refined
ZJU-MoCap dataset provided by the author. We change the data split to match other baselines while keeping all other
hyperparameters the same.

1https://github.com/chungyiweng/humannerf
2https://github.com/taconite/arah-release
3https://github.com/zju3dv/instant-nvr



Table 2. Additional Ablation Study on ZJU-MoCap [7]. We present the average metrics over 6 sequences.

Metric: PSNR↑ SSIM↑ LPIPS↓
Full model 30.61 0.9703 29.58
w/o Lmask 30.58 0.9703 29.90
Random initialization 30.61 0.9701 30.90
7k iterations 30.56 0.9698 31.73

C.5. MonoHuman

We note that MonoHuman uses a different data split from HumanNeRF with the last fifth of the training frames being used for
novel pose synthesis evaluation instead. For fair comparison we retrain the model from official code repository4 on the same
data split of HumanNeRF with the provided configs for 400k iterations and recompute the metrics on novel view synthesis.
The trained models are then used for qualitative evaluation and out-of-distribution pose animation.

C.6. InstantAvatar

We follow the original setup and use the provided poses optimized by Anim-NeRF [6] without further pose correction. For
quantitative results we copy the metrics from their table, while for qualitative results we train the model from official code
repository5 as they do not release pretrained checkpoints.

D. Ablation Study
We conduct additional ablation study and report the average metrics on ZJU-MoCap in Tab. 2.

D.1. Ablation on Network Components

To showcase the effect of each MLP component in our model on both training efficiency and quality, we additionally ablate
respective network-free variants: (1) shallow color MLP Fθc is replaced by spherical harmonics function, (2) no non-rigid
deformation Fθnr

, (3) learned skinning field Fθr is replaced by querying the skinning weight of the nearest SMPL vertex.
The results are shown in Tab. 3. We surprisingly find that using the SMPL nearest neighbor skinning does not harm the quality
while further reducing the training time on ZJU-MoCap dataset. The result is not sensitive to the skinning field possibly due
to subsequent compensation of non-rigid deformation. However, we keep to learn the skinning field for its flexibility and
generalization to diverse clothing.

Full (1) (2) (3) (1)(2)(3)
Time 0:24 0:24 0:20 0:19 0:12
LPIPS 29.58 31.24 32.31 29.54 32.67

Table 3. Balance between quality and efficiency. We present the average LPIPS over 6 sequences and the respective training time under
each setting.

D.2. Ablation on Color MLP

We show in Tab. 5 of the main paper that our proposed color MLP produces rendering with higher quality compared to
learning spherical harmonics coefficients. We hereby show qualitative comparison to corroborate this enhancement in Fig. 1.
Our proposed color MLP helps generate more realistic cloth wrinkles and sharper textures with pose-dependent feature z and
per-frame latent code Zc as additional inputs.

D.3. Ablation on Pose Correction

We additionally show the visualization of pose correction in Fig. 2. Following ARAH and HumanNeRF, we refine the
inaccurate SMPL estimation during training, which helps improve the quality of avatar modeling.

4https://github.com/Yzmblog/MonoHuman
5https://github.com/tijiang13/InstantAvatar



w/o color MLP Full Model Ground Truth

Figure 1. Qualitative Ablation of Color MLP.

Figure 2. Qualitative Ablation of Pose Correction. left: before pose correction, right: after pose correction. The SMPL mesh aligns
better with the ground-truth image after pose optimization.

D.4. Additional Ablation on AIAP Regularization

While forward LBS naturally generalizes to out-of-distribution poses, the pose-dependent non-rigid deformation module can
be underconstrained and noisy without proper regularization. To improve generalization, AIAP loss enforces local consistent
deformation of Gaussians, thus removing scattered Gaussian artifacts away from the human body. Similar effects can also
be observed in novel pose synthesis results on PeopleSnapshot, as shown in Fig. 3. While the AIAP loss shows marginal
improvement on novel-view synthesis benchmark, it helps stabilize the Gaussian position and shape on unseen poses.

D.5. Ablation on Mask Supervision

Explicit supervision from ground-truth foreground masks only seems to gain slight improvement, as shown in Tab. 2. How-
ever, we observe that the mask loss is useful for removing floating blobs in the empty space. Fig. 4 shows an example for
this, without mask loss, the floating Gaussian with the background color could occlude the subject in novel views.

D.6. Ablation on Gaussian Initialization

Instead of initializing the canonical 3D Gaussians from a SMPL mesh surface, we tried to perform random initialization.
Specifically, we randomly sample N = 50k points in the enclosing bounding box around the canonical SMPL mesh. Experi-
mental results from Tab. 2 demonstrate that our method could as well converge starting from random initialization, with little



Figure 3. Qualitative Ablation of AIAP regularization on PeopleSnapshot. For each subject, left: w/o AIAP loss, right: w/ AIAP loss.
Red circles highlight where Gaussian deformations become noisy without enforcing the AIAP constraint.

w/o ℒ!"#$ Full Model Ground Truth

Figure 4. Qualitative Ablation of Mask Loss.

performance drop compared to the SMPL initialization scheme. Despite this interesting observation, we decide to use SMPL
initialization as it is more intuitive and does not incur any overhead.

D.7. Ablation on Training Iterations

Training for 15k iterations on ZJU-MoCap takes precisely around 24 minutes. We further show that our method can already
achieve high-quality results at 7k iterations in Tab. 2, which takes around 10 minutes, not far away from [3] and [2] that claim
instant training within 5 minutes. Qualitative comparison is shown in Fig. 5.

E. Additional Qualitative Results
We show more qualitative results in this section. For better visualization, we strongly recommend to check our supple-
mentary video.

E.1. Qualitative Results of Novel View Synthesis on ZJU-MoCap

Additional qualitative comparison of novel view synthesis on ZJU-MoCap is shown in Fig. 6. HumanNeRF and MonoHuman
preserves sharp details, but often produces undesired distortions and cloud-like effect around the contour. ARAH gives more



7k iterations (~10 min.) 15k iterations (~24 min.) Ground Truth

Figure 5. Qualitative Ablation of Training Iterations.

rigid body thanks to their explicit modeling of geometry, while they show misalignment and lack fine details. Instant-NVR
synthesizes blurry appearance and obvious artifacts on the limbs. Overall, our method can generate high-quality images with
realistic cloth deformations.

E.2. Qualitative Results of Out-of-distribution Poses on ZJU-MoCap

We present qualitative comparison of extreme out-of-distribution pose animation in Fig. 7. Our method does not produce
obvious artifacts compared to baselines, demonstrating good generalization to unseen poses.

E.3. Qualitative Results on PeopleSnapshot

We show qualitative results on the test set of PeopleSnapshot in Fig. 8. Compared to InstantAvatar, our method produces
sharper results, especially in the face region.

F. Limitations
While our proposed approach achieves state-of-the-art rendering quality of clothed human avatars with an interactive frame
rate of rendering, the training time of our model still does not match those fast grid-based methods [2, 3]. On the other hand,
our method may produce blurry results in areas with high-frequency texture or repetitive patterns, such as striped shirts.
Lastly, our method does not provide accurate geometry reconstruction of the avatar, unlike ARAH [8]. Despite reasonable
rendering quality, our method generates noisy surface normal resulting from the inconsistency of Gaussian splat depth. It
would be particularly interesting to study how to extract a smooth, detailed geometry from the 3DGS avatar model, possibly
by applying regularization to the normal map or attaching 3D Gaussians to an underlying mesh.
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Figure 6. Qualitative Comparison of Novel View Synthesis on ZJU-MoCap.
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Figure 7. Qualitative Comparison of Out-of-distribution Pose Animation on ZJU-MoCap.

GT Ours InstantAvatar [3] GT Ours InstantAvatar [3]

Figure 8. Qualitative Comparison on PeopleSnapshot [1]. Best viewed zoomed-in.
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