Boosting Diffusion Models with Moving Average Sampling in Frequency Domain — CVPR 2024 Supplementary Material*

Yurui Qian[†], Qi Cai[‡], Yingwei Pan[‡], Yehao Li[‡], Ting Yao[‡], Qibin Sun[†], and Tao Mei[‡] [†]University of Science and Technology of China [‡]HiDream.ai Inc.

qyr123@mail.ustc.edu.cn, {cqcaiqi, pandy, liyehao, tiyao}@hidream.ai, qibinsun@ustc.edu.cn,tmei@hidream.ai

This supplementary material contains: 1) the Algorithm underlying our Moving Average Sampling in Frequency domain (MASF); 2) more experiments on ImageNet 64×64 ; 3) evolution of x_0^t with respect to t; 4) visualization results.

1. Algorithm

We illustrate the algorithm of our MASF in Algorithm **S**.1.

Algorithm S. 1 MASF

Require: initial value $\boldsymbol{x}_T \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}), \bar{\boldsymbol{x}}_f^{T+1} = \boldsymbol{0}, \boldsymbol{w}_f^T = \boldsymbol{0}, (f \in \{ll, lh, hl, hh\}),$ variance schedule α_t $(t \in \{1, 2, \dots, T\}), \bar{\alpha}_t = \prod_{i=1}^t \alpha_i$, denoising network $\boldsymbol{\epsilon}_{\theta}(\cdot)$, solver Solver.

MASF hyperparameters: γ , $\beta_f(t)$, \boldsymbol{w}_f^t .

Denote Discrete Wavelet Transformation as DWT, Inverse DWT as IDWT and element-wise multiplication as \circ .

```
 \begin{split} & \text{for } t = T \text{ to } 1 \text{ do} \\ & \boldsymbol{x}_0^t = (\boldsymbol{x}_t - \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_t, t)) / \sqrt{\bar{\alpha}_t} \\ & \boldsymbol{x}_{ll}^t, \boldsymbol{x}_{hh}^t, \boldsymbol{x}_{hh}^t, \boldsymbol{x}_{hh}^t \leftarrow \text{DWT}(\boldsymbol{x}_0^t) \\ & \text{for } f \text{ in } \{ll, lh, hl, hh\} \text{ do} \\ & \bar{\boldsymbol{x}}_f^t \leftarrow (1 - \gamma \boldsymbol{w}_f^t) \circ \boldsymbol{x}_f^t + \gamma \boldsymbol{w}_f^t \circ \bar{\boldsymbol{x}}_f^{t+1} \\ & \text{end for} \\ & \tilde{\boldsymbol{x}}_0^t \leftarrow \text{IDWT}(\beta_{ll}(t) \bar{\boldsymbol{x}}_{ll}^t, \beta_{lh}(t) \bar{\boldsymbol{x}}_{lh}^t, \beta_{hl}(t) \bar{\boldsymbol{x}}_{hl}^t, \beta_{hh}(t) \bar{\boldsymbol{x}}_{hh}^t) \\ & \boldsymbol{x}_{t-1} \leftarrow \text{Solver}(\boldsymbol{x}_t, \tilde{\boldsymbol{x}}_0^t, t) \\ & \text{end for} \\ & \text{return: } \boldsymbol{x}_0 \end{split}
```

2. More Experiments on ImageNet 64×64

In this section, we further evaluate our MASF by leveraging three pre-trained models on ImageNet 64×64 dataset in Table S.1 using FID with 50K samples. Generally, applying MASF can boost performances across different models (continuous time and discrete time) and various backbone architectures.

3. Evolution of x_0^t with respect to t

To validate the efficacy of our MASF on stabilizing denoising process, we further plot the evolution of x_0^t with respect to timestep t before (Baseline) and after applying MASF. Figure S.1 demonstrates that applying MASF can reduce oscillation and lead to a more stable denosing trajectory.

Figure S. 1. We utilize a diffusion model from ADM pre-trained on ImageNet-64 to sample from pure noise and capture the intermediate output as denoised sample x_t . We calculate x_0^t with the noise and x_t . Subsequently, we plot the pixel value of x_0^t with respect to generative timesteps t from Baseline and our MASF, respectively.

4. Visualization Results

For a more comprehensive qualitative validation of our MASF, we present additional generated images from the ImageNet 256×256 dataset in Figure S.2.

^{*}This work was performed at HiDream.ai.

Table S. 1. FID comparisons of 50K samples with different settings on ImageNet 64×64 .

Model	Sampler	NFE			
		10	15	20	25
EDM	Heun	33.39	6.12	4.51	3.69
EDM	+MASF	27.75	5.62	4.12	3.47
U-ViT	DPM-Solver++(3M)	43.71	5.31	4.41	4.32
U-ViT	+MASF	29.81	4.93	4.20	3.99
ADM	DPM-Solver++(2M)	7.34	4.48	3.75	3.49
ADM	+MASF	6.90	4.38	3.58	3.28

Figure S. 2. The generated images on ImageNet 256×256 by using DDIM and DDIM plus MASF with 25 NFE (number of function evaluations).