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Details of the Subject Matching Algorithm
As presented in the ‘Subject Registration’ in Section 3.4.
We consider two constraints for accurate matching. The
first one is cycle consistency, which means the connection
of the same subject from all views should form a loop. The
second one is uniqueness, which means one subject should
not be connected to more than one subject in another view.
To clearly explain the two constraints and our solutions. We
present an example to illustrate.

After applying the binarization operation with thresh-
olds, we can get a mask matrix to show which pairs may
be the same person, as illustrated in Figure 1(a). Analyzing
the matrix, we can know that person A in view 1 matches
both persons B and C in view 2 and person D in view 3.
Similarly, person B in view 2 may match person D and E in
view 3. The black arrows in Figure 1(b) visually represent
the matching relationships.

Considering the matching results, the first problem here
is the lack of cycle consistency. we can see that A and B
are connected, as well as B and E are connected. If these
two connections are correct, the cycle consistency requires
that A and E should also be connected as the same person.
But we can see from the mask matrix that A and E have no
connection between them.

To solve the problem, we use a data structure called
union-find to aggregate the transitive relation in the mask
matrix. For every aggregated union from the union-find,
we create an augmented graph with hidden edges as the red
dashed arrow shown in Figure 1(b). Now, there is an im-
plicit connection between A and E by the transitive path:
A to B and B to E, where the weight of each edge is the
confidence score from the similarity matrix.

We divide the nodes of the graph into different layers
(representing different views) as separated by blue dashed
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Algorithm 1: Uniqueness conflict solving:
Input: Sori: A set of node indices with some uniqueness

conflicts,
Mpred: A similarity score matrix between all

persons,
Mask: A mask matrix to denote the connection

between different persons.
Output: Lres: A list of sets of node indices without

uniqueness conflict.
1 Lres = [] //used to record the result of divided subgraphs.
2 Lview = DivideGraphByView(Sori) //Dividing the nodes

into different views.
3 while Length(Lview) > 0 do
4 n = Length(Lview)
5 pivot = Lview[0][0]
6 tmp set = new set()
7 tmp set.add(pivot)
8 Lview[0].pop(pivot) // Removing the pivot node from

the original graph.
9 for v = 1 : n− 1 do

10 node = GetMaxScoreOfView(Lview[v], tmp set,
Mpred, Mask) //Used to get the selected node
in this view, if no node meets the condition will
return -1.

11 if node ! = −1 then
12 tmp set.add(node)//Adding the selected node

to subgraph.
13 Lview[v].pop(node)//Removing the selected

node from the original graph.

14 Lres.append(tmp set)//Saving the subgraph.
15 RemoveEmptyView(Lview)//Removing the

layer(view) with no node remaining.
16 return Lres

lines in Figure 1(b). We can find some conflicts of unique-
ness between B and C (both connected to A), D and E
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Figure 1. An example of solving the cycle consistency and uniqueness.

(both connected to B) in the graph, as highlighted within
red dashed rectangles. We consider cutting the graph into
reasonable subgraphs without uniqueness conflicts. We de-
fine the problem as a hierarchical maximum spanning sub-
graph problem, the layer-by-layer (view-by-view) spanning
constraint that a subject is connected at most to one node
in each view to avoid the uniqueness conflict. Figure 1(c)
shows the complete flow of our solution of an example.

Specifically, first, we select A from view 1 as a pivot and
search the max confidence edge to view 2, the edge A-B
with the highest 0.4 score is selected. Then nodes A and
B are divided into the sub-graph as indicated by the purple
dashed area in the figure, and the uniqueness conflict has
been resolved in view 2. After that, we detach the sub-graph
from the original graph in view 1 and view 2 by cutting off
the connections A-C and B-C, represented as transparent
dashed arrows in the figure. Second, we search the max-
imum spanning node between the detached sub-graph and
nodes in view 3. There are three candidates B-D with a sim-
ilarity score of 0.37, A-D with 0.35, B-E with 0.36, and the
max one is B-D with 0.37. So, we merge node D into the
sub-graph and cut off all the conflicted edges to solve the
uniqueness conflict in view 3. Here, a maximum spanning
subgraph A-B-D is divided from the original graph. Third,
we repeat the flow as the above two steps layer by layer:
choosing a pivot in the remaining nodes and dividing the
maximum spanning graph in sequence. The flow won’t stop
until there is no uniqueness conflict. The pseudo code of the
above algorithm is shown in Algorithm 1. When there is no
conflict, the remaining nodes will be divided into different
subgraphs depending on their connection relations.

Overall, we consider both the implicit connection rela-
tions for cycle consistency constraint and the hierarchical
maximum spanning for uniqueness constraint.

Dataset Statistics
The dataset statistics for CSRD-II, CSRD-V, and CSRD-R
are shown in Table 1.

Table 1. Dataset statistics.

# Images # Annotations # Views # Sub./Frm. # Scenarios

CSRD-II 3K 51K 2 5-25 1

CSRD-V 5K 97 K 5 5-25 1

CSRD-R 15 K 170 K 2-4 7-12 5

Details of Comparison Methods
We first compare our method with other methods for the
camera registration task.
• DMHA: DMHA [2] achieves the task of camera registra-
tion by using the real BEV image. Besides the FPV images,
we additionally provide the corresponding BEV image gen-
erated by our data engine to DMHA. To evaluate the results,
we use the ground-truth position of camera wearers and pre-
dicted camera wearers in the generated BEV to calculate the
distance and angle errors.
• SIFT + KNN and other deep-learning-based methods: We
also compare with some key point matching based methods,
including both the traditional method like SIFT[6] and the
latest CNN based matching methods [5, 7–9]. The input of
both methods is a pair of FPV images and then we can get
some key point matching pairs. After that, we use the clas-
sical camera pose estimation method with the matched key
points to generate the essential matrix and convert it to the
relative camera location and (yaw-axis) direction. Note that,
the error of SIFT is relatively large, some camera position
estimation is out of the scene border, in this case, we crop
the position of estimation to the outer boundary of that axis.
But the same problem does not occur in the deep-learning-
based methods for their relatively higher precisions.

For the second task of subject registration, we first com-
pared with a single-view human depth estimation method
namely Monoloco++ [1]. Also, we include several works[3,



Figure 2. Results for sensitive analysis.

4] for multi-view detection, which both require the camera
calibration to project all views into a shared plane to create
the occupancy map.
• Monoloco++ [1]: Monoloco++ is a network trained on
KITTI and nuScenes datasets, which is used to predict the
3D-localization and face orientation of each person in the
view. We concatenate it with our proposed geometric trans-
formation and subject fusion methods for evaluation.
• MVDet and MVDetr [3, 4]: These two methods need cam-
era calibrations for generating the results of subject registra-
tion. So we calculate the camera calibrations by using the
3D localization of feet (with height = 0) and the 2D position
of the bottom of the bounding box of each person predicted
in our methods. With the calibration, these two methods
generate multi-view human detection predictions (without
human identifications) in the BEV. Then we evaluate the re-
sults by using the Hungarian matching algorithm to match
the identification of all the predicted points with the ground-
truth ones through the minimum spatial distance.

Sensitivity Analysis
Here, we provide the sensitivity analysis of our method to
the number of views/pedestrians and the locations of pedes-
trians and cameras in the figure above. As shown in Fig-
ure 2, we can see that the angle prediction results are more
sensitive, but the overall fluctuation of the angle prediction
basically stays within 2 degrees, while the position predic-
tion results are quite stable within a very small range.

Time Complexity Analysis
As it is shown in Table 2, we compute the time efficiency of
the proposed method. Specifically, we counted the average
speed (fps) of different modules and the overall speed. We
can first see that the overall speed is over the real-time effi-
ciency. Moreover, the feature extraction operations in VTM
and Association modules take up the main time cost, which
can be parallel implemented for multi-view input for further
acceleration.

Table 2. Time efficiency of different components in our method.

Module VTM Association SAM Registration Overall

FPS 126.14 51.21 1490.36 3423.51 35.19
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Figure 3. An illustration of the proposed geometric similarity-
based localization metric. We use di to represent the distance be-
tween a pair of subjects in BEV and d′i to represent the normalized
distance.

Evaluation Metric for Real-world Dataset

Geometric similarity-based localization metric: Evaluating
results on real datasets can be challenging for the absence
scale between the real BEV and the registered BEV. Here,
we propose a geometric similarity-based localization met-
ric, allowing cross-domain performance evaluation between
the real BEV and the registered BEV. To achieve this, we
first calculate the normalized distances among all subjects
in the real and the registered BEVs separately. Then, we
flatten the normalized distances as vectors by aligned IDs
between the real BEV and the registered BEV. We calculate
the cosine similarity between these two vectors and use it to
measure the result of cross-domain registration, as shown in
Figure 3.



More Visualization Results
We show more visualization results in different situations.
As shown in the following Figures 4-7, we can see that our
method can accomplish the task very well, even in some
difficult and special cases.

Figure 4. In this case, the camera wearer of view3 does not appear
in any FPV. Our camera registration method can still predict it
accurately.

Figure 5. In this case, six people are standing in a row with serious
occlusion. Our method makes full use of information from com-
plementary views to finish the task of registration.

Figure 6. This case is a dense crowd scene, and the camera is
located very close to the crowd, and some of the camera wearers
are part of the crowd.

Figure 7. In this case, camera wearer2 is standing opposite to cam-
era wearer1 and camera wearer4 is standing opposite to camera
wearer5, which is the most difficult case of the camera registration
task.
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