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Supplementary Material

A. FLAME Tracking
For FLAME [4] tracking, we optimize for per-frame pa-
rameters (translation ti, joint poses θi, expression ψi) and
shared parameters (shape β, vertex offset ∆v, and an
albedo map A). Our optimization combines a landmark
loss, a color loss, and regularization terms.

We use a state-of-the-art facial landmark detector [10] to
obtain 68 facial landmarks in 300-W [7] format. Among
them, we exclude 17 facial contour landmarks to avoid in-
consistency caused by occlusion. We use NVDiffRast [3] to
render FLAME meshes and obtain gradients of vertex posi-
tions regarding the color loss by texel interpolation for the
interior and anti-aliasing on the boundary. For regulariza-
tion, we apply a Laplacian smoothness term on the vertex
offset and temporal smoothness terms on the per-frame pa-
rameters.

We optimize all the parameters on the first time step of
the video sequence until convergence, then optimize per-
frame parameters for 50 iterations for each following time
step with the previous one as initialization. Afterward, we
conduct global optimization for 30 epochs by randomly
sampling time steps to fine-tune all parameters.

We use the 2023 version of FLAME [4] for the revised
eye regions. Furthermore, we manually add 168 triangles
for teeth to the template mesh of FLAME and make the
upper and lower teeth triangles rigid to the neck and jaw
joints, respectively. This improves the fidelity of our avatar
as shown in Fig. 1.
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Figure 1. Adding triangles that move rigidly with the head and the
jaw helps Gaussian splats to capture teeth details.

B. Dataset Division
We use 11 sequences for each subject from the NeRSem-
ble [2] dataset. Tab. 1 lists concrete sequence types and IDs

Setting Novel View Synthesis
& Self-reenactment

Cross-identity
Reenactment

Sequence Type EMO EXP FREE

Sequence ID 1 2 3 4 2 3 4 5 8 9 -

Table 1. The types and IDs of sequences for different settings.

Subject ID 074 104 218 253 264 302 304 306 460

Test Sequence EMO-4 EXP-2 EXP-9 EMO-4 EXP-9 EMO-2 EXP-2 EXP-2 EMO-3

Table 2. The held-out sequence of each subject for self-
reenactment evaluation.

raw images pre-processed images

Figure 2. We remove the background and pixels below the shoul-
der to focus on the head region.

for different settings. Among the emotion (EMO) and ex-
pression (EXP) sequences, we randomly hold out one for
self-reenactment evaluation (Tab. 2) and use the rest nine
for training.

To simplify the pipeline for Gaussian splat optimization,
we remove the background of raw images with Background
Matting V2 [5]. Additionally, we fit a line across the bottom
vertices of each tracked FLAME mesh and project the line
to each viewpoint to remove the pixels below. We show an
example of pre-processing results in Fig. 2.

C. Computation Efficiency

Our method binds 3D Gaussians to triangles in an efficient
way, maintaining high rendering and optimization speed.
Given that 3D Gaussians are actively added and pruned dur-
ing optimization, the running speed of the program also
changes.

Efficiency during optimization. We show the evolution
of the number of Gaussians and the run-time of an iteration
in Fig. 3. According to Fig. 3a, the number of Gaussians
grows from 10,144 (that is, the number of triangles in our
modified FLAME mesh) to around 100,000 (on average).
After this point is reached however, the number of Gaus-



(a) The number of 3D Gaussians throughout the optimization process. (b) The run-time of an optimization iteration.

Figure 3. The number of 3D Gaussians increases by a factor of around 10 from its starting point for all subjects. After this, the number of
3D Gaussians stops growing. Despite this growth in Gaussians, the run time of each training iteration at most only doubles. Each curve
corresponds to a different subject.

sians no longer increases. Thanks to this, longer training
times do not mean ever-increasing memory requirements.
In fact, our model can fit and be trained on an NVIDIA
RTX 2080 Ti Graphics card with 12 gigabytes of VRAM.
Moreover, while the number of Gaussians grows by as much
as 1000% during training, the run-time of each optimiza-
tion iteration increases by less than 100% (Fig. 3b) at this
peak. This validates the efficiency of the differentiable tile
rasterizer [1], which sorts splats before blending and termi-
nates ray marching once zero transmittance is reached. The
threshold of our scaling loss (see Section 3 of the main pa-
per) is crucial to this efficiency. Without it, rendering time
would increase substantially, as the rasterizer would need to
blend many more Gaussians before reaching zero transmit-
tance.

Efficiency during inference. Although our data are pro-
cessed into a fixed resolution, the optimized model can be
rendered in arbitrary resolutions. We show the average ren-
dering FPS in variant resolutions to validate the efficiency
of our method to suffice real-time applications.

Resolution 401×225 802×550 1604×1100 3208×2200 6416×4400

FPS 187 187 156 95 36

Table 3. Rendering speed tested on subject #306.

D. Baselines
We compare our method with three state-of-the-art methods
for head avatar creation.

INSTA [11] directly warps points according the nearest
FLAME [4] mesh triangle. It adds triangles to the mouth,
and conditions radiance field queries in the mouth region
on the expression code of FLAME to improve the quality of
the mouth interior. The loss weight for the mouth region is
40× higher than other regions. It also applies a depth loss
on the facial region.

PointAvatar [9] uses a point-based representation, which
is closely related to 3D Gaussians. It does not directly rely
on the FLAME surface but uses its pose and expression pa-
rameters to condition a deformation field. During optimiza-
tion, it applies a coarse-to-fine strategy to progressively in-
crease the size of the point cloud and decrease the radius of
each point. It also uses a post-processing operation to fill
holes by applying erosion and dilation to rendered images.

AvatarMAV [8] uses voxel grids for both a canonical ra-
diance field and a set of bases of a motion field. It models
deformation by blending the motion bases with the tracked
expression vectors of a 3D morphable model [6]. We adapt
this method to use our tracked FLAME poses and expres-
sions to ensure fairness.
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