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1. Video Demo

In Figure 1 of our main paper, we have visualized the lan-
guage features learned by LERF and our method. For
a fair comparison, we perform PCA on the decoded fea-
ture Ψ(F l

t ) ∈ RD×H×W for our method. However, one
benefit of our method is that we are able to directly vi-
sualize the learned language features in the encoded 3-
dimensional latent space, which can ensure color consis-
tency between frames.1 Specifically, we normalize the en-
coded 3-dimensional latent features H l

t(v) ∈ R3×H×W

and visualize them by treating the 3-dimensional features
as RGB channels.

We strongly recommend readers refer to our video
demo at https://www.youtube.com/watch?v=
XMlyjsei-Es to observe the learned 3D language fields
in the scene-specific latent space. The video demonstrates
that our method has acquired a 3D language representation
that is both 3D-consistent and distinctly shaped, which sig-
nificantly distinguishes it from existing methods that often
only learn 3D language representations with blurred bound-
aries. Meanwhile, our approach achieves a speedup of 119
× compared to LERF at a resolution of 988× 731 and fur-
ther improves to 199 × faster at a resolution of 1440×1080.

2. More Implementation Details

For each text query, we can obtain three relevancy maps
with our trained 3D language Gaussians, each representing
one semantic level defined by SAM. Then we use different
strategies to choose the best semantic level and obtain the
predictions for different tasks.
3D Object Localization on LERF. To mitigate the impact
of outliers, we first employ a mean convolution filter with
a size of 20 to smooth the values of three relevancy maps.
For the smoothed relevancy maps, we select the one with
the highest smoothed relevancy score and take the corre-

∗ Equal contribution. �Corresponding authors.
1The consistency of color in PCA visualizations across different frames

is not ensured.

sponding position as the final prediction.
3D Semantic Segmentation on LERF. Similarly, to miti-
gate the influence of outliers, we apply a mean filter with
a size of 20 to smooth the three relevancy maps. Subse-
quently, we select the relevancy map with the maximum
smoothed relevancy score for binary mask prediction. For
the selected relevancy map, we first normalize its relevancy
scores and then use a threshold to obtain a binary image as
the final prediction mask.
3D Semantic Segmentation on 3D-OVS. For each class
query, we obtain three relevancy maps. We apply a thresh-
old of 0.4 to these relevancy maps, setting relevancy scores
below 0.4 to 0 and relevancy scores above 0.4 to 1, resulting
in three binary maps. We calculate the average relevancy
scores within the mask region for each relevancy map and
select the relevancy map with the highest average response
as the final predicted binary map.

3. More Quantitative Results
In addition to the mIoU metric, the Accuracy metric is also
employed on the 3D-OVS dataset in [5].2 Therefore, we
also compare our method with other state-of-the-art meth-
ods on the 3D-OVS dataset using the Accuracy metric. The
results are shown in Table 1. We observe that our method
consistently outperforms other methods, which further il-
lustrates the superiority of our method.

4. More Ablation Study
To reduce the memory cost of our 3D language Gaussians,
we proposed the scene-specific autoencoder to learn a latent
feature. We show the ablation results of different latent di-
mensions d on the bench scene of the 3D-OVS dataset in
Table 2. We observed that as d increases, the mIoU perfor-
mance improves, with only a slight increase in the time cost.
We chose d = 3 because it allows us to directly visualize
the learned 3D language field in the latent space by treating

2After checking with the authors of 3D-OVS, we confirmed that the
mAP results reported in [5] are, in fact, the Accuracy results.
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Method bed bench room sofa lawn overall

LSeg [3] 87.6 42.7 46.1 16.5 77.5 54.1
ODISE [6] 86.5 39.0 59.7 35.4 82.5 60.6
OV-Seg [4] 40.4 89.2 49.1 69.6 92.1 68.1

FFD [2] 86.9 42.8 51.4 9.5 82.6 54.6
LERF [1] 86.9 79.7 79.8 43.8 93.5 76.7
3D-OVS [5] 96.7 96.3 98.9 91.6 97.3 96.2

LangSplat 99.2 98.6 99.3 97.9 99.4 98.9

Table 1. Quantitative comparisons of 3D semantic segmentation
on the 3D-OVS dataset. We report the accuracy scores (%).

d 1 2 3 8

mIoU (%) 6.46 91.93 94.19 95.20
Speed (s/q) 0.2770 0.2779 0.2788 0.2807

Table 2. The ablations of latent dimension d for our scene-specific
autoencoder. The results are obtained on the bench scene of the
3D-OVS dataset. The image resolution is 1440× 1080.

the 3-dimensional features as the RGB channels. We also
strongly encourage readers to refer to our video demo to
observe how our learned language field accurately captures
the precise 3D shape of objects in the scene-specific latent
space.

5. More Visualization Results
3D Object Localization on LERF. We visualize more ex-
amples on the LERF dataset for open-vocabulary 3D ob-
ject localization in Figure 1. We found that for text queries
such as “red apple” and “plate”, LERF failed to correctly lo-
cate the 3D positions, whereas our method succeeded. For
text queries like “waldo” and “chopsticks”, although LERF
could identify the correct location, its activation values were
more dispersed, whereas our method was able to focus more
precisely on the queried object.
3D Semantic Segmentation on LERF. We demonstrate
more examples on the LERF dataset for open-vocabulary
3D semantic segmentation in Figure 2. We observed that
the results produced by LERF were unable to provide the
precise shape of the queried object and exhibited a signifi-
cant amount of noise, whereas our method could accurately
depict the object’s shape. These results show the effective-
ness of our proposed LangSplat.
3D Semantic Segmentation on 3D-OVS. We show more
scenes on the 3D-OVS dataset for open-vocabulary 3D se-
mantic segmentation in Figures 3, 4, 5, and 6, respectively.
Compared to the previous state-of-the-art method 3D-OVS,
our approach provides more precise object boundaries and
exhibits reduced noise, which illustrates that our LangSplat

learns a more accurate 3D language field.
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Figure 1. More qualitative comparisons of open-vocabulary 3D object localization on the LERF dataset. The red points are the model
predictions and the black dashed bounding boxes denote the annotations.
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Figure 2. More qualitative comparisons of open-vocabulary 3D semantic segmentation on the LERF dataset.
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Figure 3. Qualitative comparisons on the blue sofa scene of the 3D-OVS dataset.
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Figure 4. Qualitative comparisons on the snacks scene of the 3D-OVS dataset.
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Figure 5. Qualitative comparisons on the office desk scene of the 3D-OVS dataset.
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Figure 6. Qualitative comparisons on the room scene of the 3D-OVS dataset..
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