MPS: An Open-ended Embodied System in Minecraft
via Perception and Planning Collaboration
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Figure 1. Paradigm innovation.

A. Discussion of MP5

As shown in Fig. 1, existing methods usually follow the
paradigm that an agent should be with the ability of planning
(e.g., GITM & Voyager), embodiment (e.g., DreamerV3), or
both of them (e.g., DEPS). To be different, MP5 introduces
a new paradigm that these components (i.e., embodiment,
planning, and execution as well), should be enhanced with
the awareness of the situation (i.e., rich contextual and pro-
cedural information w.r.t. the task), which is more human-
like and has the potential to solve more difficult open-end
context- and process-dependent tasks (as evaluated in Sec.
4.2.3). (2) Technically, MP5 comprises five interactive mod-
ules to meet the requirement of the new paradigm, with an
MLLM-based active perception scheme to fulfil the situation
awareness. To our best knowledge, MP5 is the first embod-
ied system in Minecraft that is capable of situation-aware
planning and action execution. (3) Only our method can
solve Context-Dependent Tasks (in Tab. 1) by leveraging the
situation-aware planning and execution. We constructed a
detailed benchmark (in Sec. 4) to explore how agents com-
plete tasks required complex reasoning and constrained by
extensive environmental information.

‘We have provided a comparison of setups and their con-
sequences in Tab. 1. It tells that the proposed MP5 applies
ego-centric RGB images, just utilizes a restrained set of

human-defined primitives, but can solve the most challeng-
ing context-dependent and process-dependent tasks.

B. Implementation Details
B.1. Percipient
B.1.1 Data Collection

For data collection, we use Minedojo [4] to obtain Minecraft
snapshots which contain a wide array of details within the
agent’s surroundings, including blocks, biomes, mobs and
etc. Following the environment creation, we enable our
agent to perform a rotation on the spot, capturing snapshots
from 12 distinct perspectives spaced 30 degrees apart. For
each of these snapshots, we record the ground-truth informa-
tion about the agent’s surroundings by leveraging the data
available in the MineDojo [4] observation space such as Li-
dar. In order to ensure the exact correspondence between
the ground-truth information and the image, the information
corresponding to the Field of View region of the image is
screened from the Lidar as the ground-truth information of
the image.

To compile a comprehensive dataset encompassing var-
ious conditions and terrains in Minecraft, we implement a
two-step data collection process: acquiring data related to
different biomes and gathering data on different mobs. In
the first step dedicated to gathering data on diverse biomes,
we collect information from all 60 biomes available in Mine-
Dojo [4]. For each biome, we sample 20 environments,
resulting in a total of 7.2K images. In the second phase of
gathering data for various mobs, our focus is on collecting
images of 9 commonly found mobs in the Minecraft world:
zombies, skeletons, creepers, spiders, cows, chickens, sheep,
pigs, and wolves. We specifically choose 30 representative
biomes from the available 60 Minecraft biomes for this data
batch. Among these 9 types of mobs, the first four exclu-
sively appear during the night, while the remaining five can
be encountered both during the daytime and nighttime. For

Table 1. Explicit comparisons of setups and consequences.

Observation Space

Action Space

Instruct

Situation-

Situation-

Tasks Agents Can Perform

Method Info Not Action Action Primitive Following aware aware Process Context Process & Context
Type O i Type Num Library Size Plan Execution (Long-Horizon Tasks) (High Env. Info Tasks) (C i of 2 Tasks)

DreamerV3 RGB v Original MineRL 25 0 X X X v X X

DEPS RGB v Compound (MineDojo) 42 0 v X X v X X
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Table 2. Comparison of Observation Spaces Among Different Methods

Method

Perceptual Observation

Status Observation

LiDAR rays

C
GITM [19] 10 x 10 x 10 Voxels

life statistics
GPS, inventory, equipment

DreamV3 [5] Ego-View RGB

life statistics
inventory, equipment

VPT [1] Ego-View RGB

g

Ego-View RGB

DEPS [17] 3 x 3 x 3 Voxels

Compass
GPS, equipment

JARVIS-1 [16] Ego-View RGB

life statistics
GPS, inventory, equipment
location status (biome, weather, efc.)

Ego-View RGB

MP5 (ours) 3 % 3 x 3 Voxels

life statistics
GPS, inventory, equipment

the mobs that appear in both periods, each mob type is gen-
erated across 30 biomes, with 20 environment samples (10
during the daytime and 10 during the nighttime). This results
in the creation of 36K images for these five mobs. As for
the mobs exclusive to nighttime, they are generated in 30
biomes, with 10 nighttime environment samples per biome
and 12 images per environment sample, culminating in the
generation of 7.2K images.

The data obtained from both the first and second stages
contribute to a comprehensive dataset totaling 50K images,
and we prompt ChatGPT [10] to curate a list of instructions
to obtain 500K image-text instruction-following data.

B.1.2 MineLLM training details

MineLLM combines the image visual encoder from
MineCLIP [4] and the large language models from Vicuna-
13B-v1.5 [2]. Images are processed by the frozen vision
encoder, whose features are projected by a two-layer MLP
named Alignment Net to the same feature space as the text
embeddings of the applied LLM. Instructions are tokenized
by SentencePiece tokenizer [7], and then the vision and text
tokens are concatenated to feed into the LLM model. To
better align the feature space of visual image encoder from
MineCLIP [4] and large language model from Vicuna [2], we
collect 500K image-text instruction-following data on the
MineDojo [4] following the method detailed in Section B. 1.1,
for the purpose of training MineLLM. Each training instance
consists of an image Z and a multi-turn conversation data
(£1,Y1s---,Tn,Y,), where ; and y, are the human’s in-
struction and the system’s response at the ¢-th turn. To train
MineLLM efficiently, we add LoRA [6] parameters to all pro-
jection layers of the self-attention layers in the LLM. Only
the parameters of the Alignment Net and the LoRA [6] mod-
ule are optimized during training. Multimodal tokens are

decoded by the LLM model and the corresponding LoRA [6]
parameters.
The training objective of Percipient is defined as:

n
L0 0) =[] po (s | v<iyei, F(D), (1)
i=1
where 0, and 6; correspond to the learnable parameters of
the Alignment Net and LoRA [6]. The Z is the image repre-
sentation produced by the visual encoder from MineCLIP [4]
and 0 = {0,,6,,0,,,6,}, where 6,, and 6, are frozen pa-
rameters of MineCLIP [4] and Vicuna-13B-v1.5 [2]. Tt is
worth noting that during the training process, only system
message responses denoted as y;, require loss computation.
Note that the loss is only computed from the part of system
responses during training.
while training MineLLM, trainable parameters(i.e., 0,
from the Alignment Net and 6; from LoRA [6]) are opti-
mized by Adam optimizer with a learning rate initialized
to be 5e — 4, and scheduled using a linear decay scheduler.
The rank of LoRA [6] modules is set to 32. We train all
parameters in a one-stage end-to-end fashion with 8 A100
GPUs. Each GPU process 2 samples every iteration and
the effective batch size is set to 128 by gradient accumula-
tion. Input images are resized to be 224 x 224 and we use
MineCLIP [4] pre-trained ViT-B/16 [3] as visual encoder,
the number of vision tokens are 196 and length of text tokens
after vision tokens are limited to 400 in training.

B.2. Memory

Inspired by the Skill library of Voyager [15], memory is uti-
lized in two parts of MP5 to perform Retrieval-Augmented
Generation (RAG [8]). The Parser employs Knowledge
Memory to decompose tasks into sub-objectives, while the
Planner, when planning an action sequence for a specific sub-
objective, may refer to similar action sequences provided by



Performer Memory. The implementation details are similar
to those of Voyager [15].

B.2.1 Knowledge Memory

For Knowledge Memory, we actually adopt a vector database
method (e.g., Chroma, FAISS, efc.) to store frequently used
knowledge. This knowledge mainly comes from three
sources: part of it is from the online wiki, another part is
from the crafting recipes of items in MineDojo [4], and some
are user tips from Reddit. Specifically, we convert commonly
used knowledge into corresponding text embeddings using
OpenAlT’s text-embedding-ada-002 [11] and store them in
a vector database. When decomposing sub-objectives re-
quires the retrieval of relevant knowledge, we also convert
the corresponding descriptions of these sub-objectives into
corresponding text embeddings. We then perform a search
match in the database and select the most similar piece of
knowledge. If the similarity score at this time is below 0.05
(the lower the score, the more similar), it is directly taken
as the result of the RAG [8]. Of course, there will also be
cases where the similarity scores are all above 0.05. This
indicates that there is currently no such type of knowledge
in the database. In this case, we manually supplement this
type of knowledge and add it to the database as the result of
the RAG [8].

B.2.2 Performer Memory

For Performer Memory, we record the task description of
each successful sub-objective and its corresponding suc-
cessful action sequence. Specifically, Performer Memory
consists of two parts. One part is a vector database used
to store the sub-objective task descriptions and their cor-
responding positions in the sub-objective sequence. The
other part is a JSON file where the key is the position of the
sub-objective in the sub-objective sequence, and the value
corresponds to the sub-objective task description and its suc-
cessful action sequence. When we need to find similar action
sequences, similar to Knowledge Memory, we convert the
current sub-objective’s task description into corresponding
text embeddings and retrieve the 2 closest matches from the
vector library. We then extract the corresponding successful
objective sequences from the JSON file using their positions
in the sub-objective sequence.

B.3. Observation Space

In order to allow the system to more closely resemble an em-
bodied agent rather than emulating a game player unlocking
the tech tree, we significantly limited environmental infor-
mation, endeavoring to enable the agent to perceive through
Ego-View RGB images as much as possible.

Our Observation Space primarily consists of two com-
ponents: one is the Perceptual Observation, and the other

is the Status Observation. The Perceptual Observation in-
cludes Ego-View Minecraft-style RGB images and 3 X 3 x 3
Voxels that the agent encounters. The Status Observation
includes some associated auxiliary textual information(e.g.,
the current agent’s life statistics, GPS location, inventory,
and equipment information). Notably, to make the system
more resemble an embodied agent, we have obscured a
large amount of environmental information (e.g., the cur-
rent biome, weather, and whether the sky is visible that
human players can learn by pressing F3). This encourages
the agent to perceive through the current RGB image rather
than directly knowing a lot of the current environmental
information.

To more clearly demonstrate our Observation Space, we
list the differing Observation Spaces of related works in the
table below, as shown in Table 2.

B.4. Action Space

The Performer module executes action sequences, which
consist of actions falling within the action space outlined
in Tab 3. These actions are brief combinations formed by
the MineDojo [4] API, with frequent interactions with the
environment occurring within each action.

For example, the action of “Find” can be described as
a directionless forward motion, initiating a jump when en-
countering obstacles. If the obstacle proves insurmountable,
the action adapts by implementing a left or right turn, fol-
lowed by the continuation of forward motion. This process
involves minimal human intervention or design. During the
execution of the “Find” action, there is a fixed frequency at
which the current Ego-View RGB images are analyzed to
ascertain whether the required object (e.g., a block, a type of
mob, etc.) has been in sight.

C. Environment Setting

Our Minecraft experimental environment is based on the
MineDojo [4] simulation platform, which provides a unified
observation and action space to foster the development of
intelligent agents capable of multitasking and continuous
learning to adapt to new tasks and scenarios.

In our experiments, the position at which the agent begins
its game, as well as the seed used to generate the environ-
ment, are both randomized. This introduces an element of
unpredictability and variety into the experimental setup, en-
suring that the agent will encounter a wide range of scenarios
and challenges. The agent is set to start in survival mode,
the most challenging and interactive mode available. Unlike
creative or adventure modes, survival mode represents a test
of the agent’s ability to strategize, and make quick decisions.
The agent is also confronted with the complication of hostile
mob generation. The agent begins its game with an empty
inventory, meaning it must actively mine and craft the ob-
jects. To simulate a real Embodied Agent, environmental



Table 3. The Definition of the Action Space we use in MineDojo [4] Simulator

Name Areuments  Description Corresponding Action Conditions Based on
g p MineDojo [4] Actions  Environmental Information
Find obiect Travel across the present terrain forward, jump Halt only when the object is
) in search of an object move left and right in Ego-View RGB image
Move obicct Move to the target object until forward, jump Halt only when the object is in the
) it is within striking distance move left and right surrounding 3 x 3 x 3 Voxels
object Craft a certain number of objects craft, attack Begins only once the environmental
Craft materials with materials in the inventory use, place conditions required are met
platform using the platform
. object Harvest a single block using Begins only once the environmental
Mine . attack . .
tool tool from surroundings conditions required are met
Equip object Equip a given object from equip Beglr.ls. only once the environmental
the current inventory. conditions required are met
Ficht object Attack a nearby entity attack Begins only once the environmental
& tool using the specified tool conditions required are met
. Ascend directly by jumping . Halt only when the agent
Dig-Up tool and placing blocks jump, place can see the sky
. y-level Descend using the specified tool Halt only when the agent
Dig-Di . . k o
1EPOWI o0l to dig your way through if necessary attac reach the specified y-level
Use object .Use the lt.e m held use %)
in the main hand
Place object Place an inventory place Begins only once the environmental

item on the ground.

conditions required are met

Table 4. Full Context-Dependent Tasks. 16 tasks are defined and divided into 4 difficulty levels based on the minimum number of information
types needed. Underlines label the environmental information, reflecting the complexity varies at each level.

Task Level Task id Task description

1-1 Find a trec 4

Easy 1-2 Find a grass #
1-3 Find a cow R
1-4 Find a pig ¥4
2-1 Find a trec 4 in the forest B

Mid 2-2 Find a grass # near a pig
2-3 Find a cow # in the desert
2-4 Find a pig @M during the nighttime [Hl
3-1 Find a tree 4 in the forest 8 during the nighttime [l

Hard 3-2 Find a grass # near a % &4 in the @ ™
3-3 Find a cow # in the desert 7% during the daytime
3-4 Find a pig %@ during the nighttime Bl in a rainy day
4-1 Find a tree 4 in the forest 8 during the nighttime [l in a sunny day
4-2 Find a pig %4 near a grass $ in the forest # during the daytime

Complex 4-3 Find a cow # near the water @ in the desert % during the daytime | in sunny day

44 Find a pig M during the daytime [ on the plains §& with a grass # next to it,

the weather is sunny day and the brightness is sufficient

factors(e.g., time, weather, efc.) change over time. At night,
the agent does not have night vision, and the items in the
inventory will be cleared upon death.

To better evaluate Context-Dependent Tasks and Process-
Dependent Tasks, which are defined in detail in Section D.1,

we select different environment settings in MineDojo [4].
For Context-Dependent Tasks, we uniformly adopt the en-
vironment in MineDojo [4] with the creative “task_id” of
“0”. For Process-Dependent Tasks, we uniformly adopt the

environment with the “task_id” of “harvest”,
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Table 5. Details of Context-Dependent Tasks Environment Information content.

Task Level Taskid Num of Info. Object
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Ecology Time Weather Brightness
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as “diamond”, and “spawn_rate” as “1”. This is why obtain-
ing redstone is more difficult than obtaining diamond, as
described in Section D.2.2.

D. Task Details and Experiment Results
D.1. Task Details
D.1.1 Context-Dependent Tasks

Context-Dependent Tasks primarily study how Active Per-
ception enables the agent to better perceive low-level context
information in the environment. We first establish 6 aspects
of environmental information derived from the Minecraft
game environment: [Object, Mob, Ecology, Time, Weather,
Brightness]. Each aspect has multiple options. For example,
pigs @@, cows #, and sheep '@ are all elements belonging to
Mob. Based on this, we define 16 tasks and organize their
difficulty into 4 levels by taking into account the number of
information elements that require perception, as is shown
in Tab. 4. Easy tasks necessitate the perception of only one
element, Mid tasks include 2 perception elements, Hard
tasks contain 3 elements, whereas Complex tasks involve the
perception of 4 to 6 elements. Each task at the same level
has different environment information content, the amount
of environment information contained in each task, and the
corresponding specific environment information is shown in
Tab. 5. Finally, we rigorously assess MP5’s proficiency in
environmental context perception across these 16 tasks.

As the main paper states, our initial environmental de-
tails are predetermined (e.g., biomes) in order to reduce the
agent’s exploration time, otherwise, the agent may fail to
find the corresponding scenario within the time limit. We
defined ten initial biome, each of which used random seeds

to generate five different environments to test each task, so
each task was tested in 50 different scenarios and the success
rate was calculated to verify MP5’s generalization ability.
In order to align as much as possible with the experimental
Settings of other methods, we did not modify the terrain to
simplify the task.

D.1.2 Process-Dependent Tasks

Process-Dependent Tasks primarily investigate situation-
aware planning and embodied action execution, incorporat-
ing contributions from Active Perception and other modules
that continuously perceive the environment and dynamically
adjust their actions to accomplish long-horizon tasks. In
Table 6, we list the names of all tasks in Process-Dependent
Tasks, their reasoning steps, object icons, the final recipe, and
the required tools/platforms. The reasoning step refers to the
number of sub-objectives that need to be completed in order
to finish the entire task. Given that the agent’s environment
information(e.g., biome, weather, efc.) is randomly initial-
ized, there may be execution errors requiring replanning,
thus potentially necessitating the completion of additional
sub-objectives, which means more reasoning steps may be
required. We consider only the most basic scenarios and
select 25 tasks based on the required reasoning steps in in-
creasing order. These tasks are then divided into 5 difficulty
levels.

For evaluation, we consider an Agent’s accidental death
in the game (e.g., being burned by lava, killed by a hostile
mob, etc.) as a failure, as well as not achieving the objective
within the time limit (e.g., exceeding the 10 minute game
limit, or API request timeout, efc.). We conduct 30 games of



Table 6. Detailed Definition of Process-Dependent Tasks. 25 tasks are defined and divided into 5 difficulty levels based on incrementally
increasing reasoning steps. A higher difficulty level implies that the agent needs to engage in longer reasoning and planning with the

environment.

Task Level Task reasoning step  Object Final recipe Tools/Platforms

mine log 1 T - -

mine sand 1 ] - -

Basic level craft planks 2 ® 1@ -

craft stick 3 rd 2*@ -

craft crafting table 3 ] 4@ -

craft bowl 4 = 3@ ®

craft boat 4 & 5+@ ®

Wooden level craft chest 4 ® 8@ ®

craft wooden sword 5 1’4 25@+1*/ L]

craft wooden pickaxe 5 A 3 @+2* 7]

mine cobblestone 6 (] - A

craft furnace 7 ¥ 8@ ®

Stone level craft stone pickaxe 7 A 34 @+2+/ ®

mine iron ore 8 &g - A

smelt glass 9 1*kg ¥

smelt iron ingot 10 @ 1*@ ¥

craft shield 11 | 1*&@4+6%@ i

Iron level craft bucket 11 v 32 L

craft iron pickaxe 11 Al 3*g42% /S ®

craft iron door 11 ] (= i

obtain diamond 12 @ - A

mind redstone 12 @ - A

Diamond level craft compass 13 ® 1" @+4%52 ®

craft diamond pickaxe 13 A 3% @+2%/ L]

craft piston 13 @ 1* @ +1*@+4@+3+ @ i

Process-Dependent Tasks and took the average success rate
as the final reported performance.

D.2. Success Rates of All Task
D.2.1 Context-Dependent Tasks

We report the success rates of different methods and percep-
tion strategies for all tasks comprehensively and in detail in
Table 7, including ours, GPT-4V [12], and LLaVA-1.5 [9],
using both Active Perception strategy and Fine-Grained
Global Perception strategy. This table also presents the de-
tailed results of the “Main Results” section under “Context-
Dependent Tasks” in the main text.

D.2.2 Process-Dependent Tasks

We report the success rates of different methods for all tasks
comprehensively and in detail in Table 10, including ours,
non-situation-aware planning, and non-embodied action ex-
ecution. This table also presents the detailed results of the
“Main Results” section under “Process-Dependent Tasks” in

the main text. The parts with a gray background in the table
represent the average success rate for the current level.

To better demonstrate the practical performance of MP5
in Process-Dependent Tasks, we select craft diamond pick-
axe with a reasoning step of 13 as the challenge. Figure 2
depicts the game-playing steps corresponding to each mile-
stone object (e.g., log I, plank @, stick ./, erc.) obtained
by the agent.

More evaluations compared with ReAct and Reflex-
tion. ReAct and Reflextion are designed to augment the
planning ability of LLMs, thus direct comparison with MP5
is not quite fair. But we can indirectly compare ReAct and
Reflextion in this way: MP5 can replace Parser, Planner,
Patroller, and Memory modules with ReAct or Reflextion,
where their results are depicted in Tab. 9. Without changing
Percipient and Performer, ReAct merges the Parser and Plan-
ner, removes Memory in MP5, thus it loses the Patroller’s
error detection and Planner’s triggers for active perception
and re-planning. Reflexion extends ReAct by reintroducing
error detection and re-planning abilities. The unnecessary
integration of the Parser and Planner, as well as the lack of



Reasoning Step

Figure 2. The game-playing steps corresponding to the acquisition of different milestone objects by the agent during the completion of the
craft diamond pickaxe challenge. The varying background colors denote the level of the Process-Dependent Tasks in which the milestone

objects are located.

Table 7. Detailed Performance on Context-Dependent Tasks. Method 4 means the method uses the Active Perception strategy, and Method¢
means the method uses the Fine-Grained Global Perception strategy. The parts with a gray background in the table represent the average

success rate for the current level.
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. Success rate(%)
Task Level  Taskid | /s Nps,  GPTAV, [12] GPT-4VG [12] LLaVA-1.54[9] LLaVA-1.5¢ [9]
1-1 980  94.0 100.0 100.0 88.0 56.0
1-2 100.0 920 100.0 100.0 68.0 44.0
Easy 13 980  88.0 100.0 96.0 76.0 42.0
1-4 980  86.0 100.0 94.0 58.0 48.0
Average | 98.5 90.0 100.0 97.5 72.5 47.5
21 980  90.0 93.0 82.0 56.0 280
22 96.0  82.0 90.0 86.0 52.0 14.0
Mid 23 920  88.0 94.0 88.0 44.0 22.0
2-4 920  84.0 96.0 84.0 48.0 26.0
Average | 94.5 86.0 94.5 85.0 50.0 22.5
3-1 940  80.0 96.0 80.0 12.0 8.0
32 980  78.0 92.0 74.0 8.0 0.0
Hard 3-3 900  76.0 90.0 74.0 10.0 6.0
3-4 900  76.0 92.0 72.0 14.0 6.0
Average | 93.0 71.5 92.5 75.0 11.0 5.0
41 920 740 90.0 64.0 0.0 0.0
4-2 920  70.0 88.0 60.0 0.0 0.0
Complex 43 860  64.0 84.0 58.0 0.0 0.0
4-4 940  62.0 88.0 58.0 0.0 0.0
Average | 91.0  67.5 87.5 60.0 0.0 0.0




Table 8. Detailed Ablation on Context-Dependent Tasks. The parts with a gray background in the table represent the average success rate for

the current level.

. Success rate(%)
Task Level - Taskid |\ o) | M+MineCLIP [4] MineLLM+CLIP [13] LLaVA-1.5 [9[+CLIP [13]

-1 98.0 98.0 88.0
12 100.0 94.0 68.0
Easy 13 98.0 96.0 76.0
14 98.0 92.0 58.0

Average 98.5 95.0 72.5

21 98.0 94.0 56.0

22 96.0 88.0 52.0

Mid 2-3 92.0 88.0 44.0
2-4 92.0 90.0 48.0

Average 94.5 90.0 50.0

3-1 94.0 90.0 12.0

32 98.0 90.0 8.0

Hard 33 90.0 84.0 10.0
34 90.0 84.0 14.0

Average 93.0 87.0 11.0

41 92.0 82.0 0.0

42 92.0 84.0 0.0

Complex 4-3 86.0 78.0 0.0
4-4 90.0 76.0 0.0

Average 91.0 80.0 0.0

Table 9. Comparison with ReAct and Reflexion.

Success Method
Rate (%) | MP5 MP5(ReAct) MP5(Reflexion)
Basic 96.00 40.00 52.67
Wooden | 88.67 10.00 21.33
Stone 76.00 0.00 2.00
Iron 52.00 0.00 0.00
Diamond | 22.00 0.00 0.00

situation-aware planning, resulted in a 0% success rate for
these two baseline methods at the Iron level. Since Reflection
has the capability to detect errors and re-plan accordingly, it
leads to a higher success rate than ReAct. Specifically, it is
twice as effective at the Wooden level compared to ReAct.

D.3. Ablation Study

D.3.1 Context-Dependent Tasks

We conduct ablation studies on the multi-modal large lan-
guage model (MLLM) part within Context-Dependent Tasks
in 8, comparing the performance outcomes of different
MLLMs and different pre-trained visual encoders in the
percipient.

D.3.2 Process-Dependent Tasks

In this section, we present detailed results from our ablation
experiments. Table 12 shows the performance of the agent in
MP5 after the removal of various modules. Table 13 demon-
strates the impact on the results when the Planner is replaced
by large language models with inconsistent reasoning capa-
bilities, including open-source models like LLaMA2-70B-
Chat [14] and Vicuna-13B-v1.5-16k [2]. Table 14 further
explores the contribution of the Memory components to the
agent’s performance, including Knowledge Memory and Per-
former Memory. Table 15 investigates the robustness gain
brought by the check part of the Patroller under “Random
Drop” conditions.

As seen from the results in Table 12, the agent’s success
rate in completing Process-Dependent Tasks significantly
decreases after the removal of any modules, with the suc-
cess rate at the Diamond level @ falling to 0.00% for all
except when the Patroller is removed. The Percipient mainly
provides the agent with visual input, the Memory primar-
ily provides the agent with relevant knowledge, the Parser
simplifies the difficulty of online task decomposition for the
agent, and the Patroller ensures that each action is sufficiently
checked for successful execution.

Table 13 presents detailed results from the Planner abla-
tion experiments in the “Ablation Study” section of the main
text. From this, we can discern that LLMs with stronger rea-



Table 10. Detailed Performance on Process-Dependent Tasks. We compare the success rate when interacting or not interacting with the
environment during the planning or execution. The parts with a gray background in the table represent the average success rate for the

current level.

. Success rate(%)
Task Level Object MP5(Ours) non-situation-aware planning non-embodied action execution
log 96.67 93.33 0.00
sand 96.67 93.33 0.00
Basic level planks 96.67 93.33 0.00
stick 96.67 90.00 0.00
crafting table 93.33 90.00 0.00
Average 96.00 92.00 0.00
bowl 93.33 90.00 0.00
boat 93.33 90.00 0.00
Wooden level chest 90.00 90.00 0.00
wooden sword 86.67 80.00 0.00
wooden pickaxe 80.00 80.00 0.00
Average 88.67 86.00 0.00
cobblestone 80.00 73.33 0.00
furnace 80.00 73.33 0.00
Stone level stone pickaxe 80.00 70.00 0.00
iron ore 60.00 50.00 0.00
glass 80.00 76.67 0.00
Average 76.00 68.67 0.00
iron ingot 56.67 50.00 0.00
shield 56.67 50.00 0.00
Iron level . bugket 53.33 43.33 0.00
iron pickaxe 50.00 40.00 0.00
iron door 43.33 43.33 0.00
Average 52.00 45.33 0.00
diamond ore 30.00 20.00 0.00
mind redstone 20.00 16.67 0.00
Diamond level compass 16.67 10.00 0.00
diamond pickaxe 23.33 10.00 0.00
piston 20.00 13.33 0.00
Average 22.00 14.00 0.00

soning capabilities demonstrate better understanding when
faced with a wide variety of text information inputs, thereby
facilitating more effective planning. The poor performance
of open-source large models like LLaMA?2-70B-Chat [14]
Vicuna-13B-v1.5-16k [2] is due to their inadequate ability
to process long and diverse types of text information. This
inadequacy is evident at the Wooden level » . where the
success rate has already plummeted to 0.00%.

As can be seen from the results in Table 14, both types
of Memory can enhance the agent’s actions, particularly
the Knowledge Memory. Without the Knowledge Memory,
the agent fails to mine iron due to its inability to recognize
where iron ore is more likely to be located. Consequently,
the success rates for both Iron @ and Diamond levels @& are
0.00%. The Knowledge Memory can help the agent more

easily understand the acquisition methods of some items,
while the Performer Memory can provide similar scenarios
for the agent to reference, thereby easing the pressure in the
planning process.

Table 15 primarily studies the robustness brought about
by the check part of the Patroller. “Random Drop” is a
specific setting that forces the Agent into execution errors.
More specifically, when the agent successfully completes
tasks with the reasoning step greater than 4, it will ran-
domly discard one item from either log @, planks @, or
stick ./ present in its inventory. This situation can lead the
agent to commit execution errors due to insufficient material,
specifically when it is completing sub-objectives of higher
reasoning steps that require logs @, planks @, or sticks ./
as materials. The check part of the Patroller can detect the



Table 11. Performance on Active Perception Query Generation
with different Round Strategy. S means Single-round Generation
and M means Multi-round Generation.

Average Generation Rate(%)

planner Strategy Easy Mid Hard  Complex
. S 100 95 75 45
- - i
Vicuna-13B-v1.5 [2] M 100 100 05 80
S 100 100 85 70
GPT-3.5-turbo [10] M 100 100 100 100

cause of these errors during execution and use it as feedback
for re-planning. With the “Random Drop” enabled and the
check part of the Patroller disabled, the agent even struggles
to complete tasks at the stone level @ are 0.00% effectively.

E. Different Strategy of Active Perception

In order to improve the quality of the Active Percep-
tion Query generated by Patroller, we use Chain-of-
Thought(COT)[18] to design a process of multiple rounds
of query generation, Patroller can generate the next most
important problem based on the current problem and task de-
scription, until the agent judges that all problems have been
produced. We conduct experiences to compare Single-round
Generation and Multi-round Generation in Tab. 11, We can
observe that Multi-round Generation using COT[ 18] gener-
ates better corresponding environment information query and
thus have a higher success rate on the Context-Dependent
Tasks.

F. Applications
F.1. Obtain Diamond Pickaxe

We demonstrate a case of the popular Process-Dependent
Tasks “craft diamond pickaxe »” challenge in Video 1.

F.2. Discovery

We demonstrate a complex level Context-Dependent Tasks
“Find a pig 4@ on the plains W& with grass % and water @
next to it during a sunny day with sufficient brightness” in
Video 2.

F.3. Open-Ended Tasks

We demonstrate a Open-Ended Tasks “Dig a block of sand '#
under the water @ with a wooden shovel /# during the
daytime | on a sunny day” in Video 3.

G. Interactions in MP5

Here we illustrate the interactions between the internal mod-
ules of MP5 during Active Perception and Re-planning,
presented in the form of dialogue text.

G.1. Active Perception

In this part, we demonstrate the communication process
among situation-aware planning, embodied action execution,
and active perception scheme when facing the task of “Find
1 sheep '@ on the plains §&”, as shown in Figure 3. The
corresponding screenshots are illustrated in Figure 5.

G.2. Re-planning

In this part, we depict the situation when facing the task of
“craft wooden pickaxe 2 with a shortfall of 1 plank 8. In
this case, the Patroller identifies the cause of the execution er-
ror and instructs the Planner to re-plan, as shown in Figure 4.
The corresponding screenshots are illustrated in Figure 6.
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Table 12. Success rates on different modules within Process-Dependent Task. The parts with a gray background in the table represent the
average success rate for the current level.

. Success rate(%)
Task Level Object MP5(Ours) w/o Percipient w/o Memory w/o Parser w/o Patroller
log 96.67 0.00 90.00 96.67 86.67
sand 96.67 0.00 90.00 96.67 73.33
Basic level planks 96.67 0.00 80.00 96.67 83.33
stick 96.67 0.00 76.67 96.67 73.33
crafting table 93.33 0.00 76.67 90.00 73.33
Average 96.00 0.00 82.67 95.33 78.00
bowl 93.33 0.00 66.67 80.00 66.67
boat 93.33 0.00 66.67 70.00 66.67
Wooden level chest 90.00 0.00 66.67 70.00 63.33
wooden sword 86.67 0.00 40.00 63.33 60.00
wooden pickaxe 80.00 0.00 40.00 60.00 60.00
Average 88.67 0.00 56.00 68.67 63.33
cobblestone 80.00 0.00 10.00 50.00 60.00
furnace 80.00 0.00 333 0.00 60.00
Stone level stone pickaxe 80.00 0.00 0.00 0.00 56.67
iron ore 60.00 0.00 0.00 0.00 40.00
glass 80.00 0.00 0.00 0.00 43.33
Average 76.00 0.00 2.67 10.00 52.00
iron ingot 56.67 0.00 0.00 0.00 36.67
shield 56.67 0.00 0.00 0.00 36.67
Iron level buc_ket 53.33 0.00 0.00 0.00 30.00
iron pickaxe 50.00 0.00 0.00 0.00 26.67
iron door 43.33 0.00 0.00 0.00 20.00
Average 52.00 0.00 0.00 0.00 30.00
diamond ore 30.00 0.00 0.00 0.00 10.00
mind redstone 20.00 0.00 0.00 0.00 333
Diamond level compass 16.67 0.00 0.00 0.00 0.00
diamond pickaxe 23.33 0.00 0.00 0.00 3.33
piston 20.00 0.00 0.00 0.00 3.33
Average 22.00 0.00 0.00 0.00 4.00




Table 13. More detailed success rates for different LLMs as Planners on Process-Dependent Tasks. The parts with a gray background in the

table represent the average success rate for the current level.

Success rate(%)

Task Level Object GPT-4(Ours) GPT-3.5-Turbo [10] LLaMA2-70B-Chat [14] Vicuna-13B-v1.5-16k [2]
log 96.67 96.67 6.67 3.33
sand 96.67 96.67 3.33 3.33
Basic level planks 96.67 96.67 0.00 0.00
stick 96.67 96.67 0.00 0.00
crafting table 93.33 90.00 0.00 0.00
Average 96.00 95.33 2.00 1.33
bowl 93.33 90.00 0.00 0.00
boat 93.33 90.00 0.00 0.00
Wooden level chest 90.00 90.00 0.00 0.00
wooden sword 86.67 83.33 0.00 0.00
wooden pickaxe 80.00 80.00 0.00 0.00
Average 88.67 86.67 0.00 0.00
cobblestone 80.00 66.67 0.00 0.00
furnace 80.00 50.00 0.00 0.00
Stone level stone pickaxe 80.00 50.00 0.00 0.00
iron ore 60.00 10.00 0.00 0.00
glass 80.00 33.33 0.00 0.00
Average 76.00 42.00 0.00 0.00
iron ingot 56.67 6.67 0.00 0.00
shield 56.67 3.33 0.00 0.00
Tron level _ bucket 53.33 0.00 0.00 0.00
iron pickaxe 50.00 3.33 0.00 0.00
iron door 43.33 0.00 0.00 0.00
Average 52.00 2.67 0.00 0.00
diamond ore 30.00 0.00 0.00 0.00
mind redstone 20.00 0.00 0.00 0.00
Diamond level compass 16.67 0.00 0.00 0.00
diamond pickaxe 23.33 0.00 0.00 0.00
piston 20.00 0.00 0.00 0.00
Average 22.00 0.00 0.00 0.00




Table 14. Success rates for different parts of Memory on Process-Dependent Tasks. The parts with a gray background in the table represent
the average success rate for the current level.

Success rate(%)

Task Level Object All Memory(Ours) w/o Performer Memory = w/o Knowledge Memory  w/o All Memory
log 96.67 96.67 90.00 90.00
sand 96.67 96.67 90.00 90.00
Basic level planks 96.67 96.67 83.33 80.00
stick 96.67 96.67 76.67 76.67
crafting table 93.33 93.33 80.00 76.67
Average 96.00 96.00 84.00 82.67
bowl 93.33 93.33 70.00 66.67
boat 93.33 90.00 66.67 66.67
Wooden level chest 90.00 90.00 70.00 66.67
wooden sword 86.67 83.33 43.33 40.00
wooden pickaxe 80.00 80.00 40.00 40.00
Average 88.67 87.33 58.00 56.00
cobblestone 80.00 73.33 16.67 10.00
furnace 80.00 73.33 6.67 3.33
Stone level stone pickaxe 80.00 70.00 3.33 0.00
iron ore 60.00 50.00 0.00 0.00
glass 80.00 70.00 3.33 0.00
Average 76.00 67.33 6.00 2.67
iron ingot 56.67 53.33 0.00 0.00
shield 56.67 53.33 0.00 0.00
Tron level _ bucket 53.33 46.67 0.00 0.00
iron pickaxe 50.00 43.33 0.00 0.00
iron door 43.33 40.00 0.00 0.00
Average 52.00 47.33 0.00 0.00
diamond ore 30.00 23.33 0.00 0.00
mind redstone 20.00 26.67 0.00 0.00
Diamond level compass 16.67 10.00 0.00 0.00
diamond pickaxe 23.33 20.00 0.00 0.00
piston 20.00 13.33 0.00 0.00
Average 22.00 16.67 0.00 0.00




Table 15. Success rates with and without the check part of the Patroller in the presence of “Random Drop” Setting on Process-Dependent
Tasks. The parts with a gray background in the table represent the average success rate for the current level.

Component Method
the check part of Patroller v X v X
“Random Drop” X X v v
Task Level Object Success rate(%)

log 96.67 86.67 90.00 90.00
sand 96.67 73.33 90.00 90.00
Basic level planks 96.67 83.33 86.67 70.00
stick 96.67 73.33 86.67 50.00
crafting table 93.33 7333 83.33 50.00
Average 96.00 78.00 78.00 70.00
bowl 93.33 66.67 80.00 10.00
boat 93.33 66.67 83.33 10.00
chest 90.00 63.33 80.00 10.00

Woodenlevel (o den sword | 86.67 60.00 7000  3.33

wooden pickaxe | 80.00 60.00 70.00 3.33

Average 88.67 63.33 78.00 7.33

cobblestone 80.00 60.00 53.33 333

furnace 80.00 60.00 5333 0.00

Stone level stone pickaxe 80.00 56.67 50.00 0.00
iron ore 60.00 40.00 30.00 0.00

glass 80.00 43.33 40.00 0.00

Average 76.00 52.00 45.33 0.00

iron ingot 56.67 36.67 26.67 0.00

shield 56.67 36.67 26.67 0.00

Iron level . bugket 53.33 30.00 16.67 0.00
iron pickaxe 50.00 26.67 13.33 0.00

iron door 43.33  20.00 10.00 0.00

Average 52.00 30.00 18.67 0.00

diamond ore 30.00 10.00 3.33 0.00
mind redstone 20.00 3.33 3.33 0.00

Diamond level compass 16.67 0.00 0.00 0.00
diamond pickaxe | 23.33 3.33  0.00 0.00
piston 20.00 333 0.00 0.00

Average 2200 400 133 0.00




Agent:
My information is as follows:
task information:
- description: Find 1 sheep on the plains.

current environment information:
- position: ground

inventory: {}

Patroller: What Minecraft creatures is this image displaying?

Percipient: There appear to be no creature in the given Minecraft image.

Patroller:
feedback: There appear to be no creature, so you need to find the specific sheep
Success: False
Suggestion: Start planning the actions.

Planner:
explanation: None
thoughts: Since the task is to find a sheep and we are already on the ground, we just need to find the sheep.
actions: [
{"times": "1", "actions": [ {"name": "Find", "args": {"obj": "sheep"} }}
]

Performer: continue doing "Find" action.

Performer: Having completed a move in “Find” action, based on my current view, tell me if I should continue this action or if the next action
is ready to execute.
Patroller: What Minecraft entities does this image represent?
Percipient: This image represents sheep.
Patroller: Could you identify the biome in this Minecraft image?
Percipient: The image appears to be from the forest biome in Minecraft.
Patroller:
feedback: Because the current biome is not forest biome, you should continue finding the sheep in the specific biome.
Success: False
Suggestion: Continue doing the current action.

Performer: Continue doing "Find" action.

Performer: Having completed a move in “Find” action, based on my current view, tell me if I should continue this action or if the next action
is ready to execute.
Patroller: What types of Minecraft mobs is this picture showing?
Percipient: This picture is showing sheep, types of Minecraft mobs.
Patroller: What kind of Minecraft biome can you observe in this image?
Percipient: The image presents a clear view of a plains biome in Minecraft.
Patroller:
feedback: Because there are sheep on the plains, which means you have successfully found the specific sheep.
Success: True
Suggestion: Start to planning the next sub-objective actions. If there is no next sub-objective, the task is successfully done.

Performer: Finish doing "Find" action.

Agent: I have found a sheep on the plains.

Figure 3. Dialogue of task “Find 1 sheep '@ on the plains §&”



System:
You are a helpful planner in Minecraft, capable of planning actions to complete sub-objectives. I will give you environmental
information and a sub-objective, for which you need to conceive a plan, and then create a list composed of a sequence of various
actions to complete it.

Patroller:
feedback: Because there are 2 logs in your inventory, this means you have successfully mined 2 logs.
Success: True
Suggestion: Start to planning the next sub-objective actions.

Patroller:
feedback: Because there are already 8 planks in your inventory, this means you have successfully crafted 8 planks using 2 logs.
Success: True
Suggestion: Start to planning the next sub-objective actions.

Patroller:
feedback: Because there are already 4 sticks in your inventory, this means you have successfully crafted 4 sticks using 2 planks.
Success: True
Suggestion: Start to planning the next sub-objective actions.

Patroller:
feedback: Because there is already 1 crafting table in your inventory, this means you have successfully crafted a crafting table.
Success: True
Suggestion: Start to planning the next sub-objective actions.

Patroller:
feedback: You do not have enough planks to complete the 'craft' action. You need 3 planks but you only have 2 planks in your
inventory.
Success: False
Suggestion: Mine or Craft enough planks first.

My information is as follows:

task information:

- task: wooden pickaxe

- quantity: 1

- material: {"planks": 3, "stick": 2}

- tool: None

platform: crafting table

- tips: 1 wooden pickaxe can be crafted with 3 planks and 2 stick as the material and crafting table as the platform.
description: Craft 1 wooden pickaxe using 3 planks and 2 stick on a crafting table as the platform.

current environment information:
- position: ground

inventory: {"stick": 2, "crafting_table": 1, "log": 1, "planks": 2, "dirt": 6}

Here are some plans to achieve similar goal for reference:
- description: Craft 1 crafting table using 4 planks without any tool or platform.
- actions: [
{"times": "1", "actions": [ {"name": "Craft", "args": {"obj": {"crafting table": 1}, "materials": {"planks": 4}, "platform":

nullp} ]}

- description: Craft 8 planks using 2 logs without needing any tool or platform.
- actions: [
{"times": “2", "actions": [ {"name": "Craft", "args": {"obj": {"planks": 4}, "materials": {"log": 1}, "platform":

null} } 1}

Planner:
explanation: You do not have enough planks to complete the "craft" action. You need 3 planks but you only have 2 planks in your
inventory.
thoughts: First, I need to craft more planks using the logs in my inventory. Then, I can craft a wooden pickaxe using the planks
and sticks.

actions: [
{"times": "1", "actions": [ {"name": "Craft", "args": {"obj": {"planks": 4}, "materials": {"log": 1}, "platform":
null} } ] 3,
{"times": "1", "actions": [ {"name": "Craft", "args": {"obj": {"wooden pickaxe": 1}, "materials": {"planks": 3, "stick": 2},
“platform": “"crafting table"} } ] }
]

Figure 4. Dialogue of task “craft wooden pickaxe 7V’ while re-planning
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Figure 5. The corresponding screenshots for the dialogue of task “Find 1 sheep '@ on the plains §&”
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Figure 6. The corresponding screenshots for the dialogue of task “Find I sheep '@ on the plains §&” while re-planning



