
Supplementary Material: Noisy-Correspondence Learning
for Text-Image Person Re-identification

In this supplementary material, we provide additional
information for RDE. More specifically, we first give de-
tailed proof and derivation for lemmas and gradients in Ap-
pendix A. In Appendix B, we detail the used datasets and
the compared baselines. In Appendix C, to further ver-
ify the robustness of RDE, we provide the re-identification
performance on three benchmark datasets under extremely
high noise rate, i.e., 80%. Besides, in Appendix D, we
provide more comparison results compared with state-of-
the-art methods to comprehensively verify the superiority
of our RDE. In Appendix E, we explore the impact of dif-
ferent selection ratios (R) on performance. In Appendix F,
we provide a more ablation analysis. In Appendix G, we
provide a large number of real noisy examples existing in
the three public datasets to conduct a case study, thus em-
phasizing our motivation. We also provide a more compre-
hensive robustness analysis to verify the robustness of RDE
in Appendix H. Finally, in Appendix I, we provide some
qualitative results to illustrate the advantages of our RDE.

A. Proof and Derivation

A.1. Proof for Lemma 1

Given an input image-text pair (Ii, Ti) in a mini-batch x,
TAL is defined as:

Ltal(Ii, Ti) =
[
m− S+

i2t(Ii) + τ log(

K∑
j=1

qij exp(S(Ii, Tj)/τ))
]
+

+
[
m− S+

t2i(Ti) + τ log(

K∑
j=1

qji exp(S(Ij , Ti)/τ))
]
+
,

(1)
where m is a positive margin coefficient, τ is a tempera-
ture coefficient to control hardness, S(Ii, Tj) ∈ {Sb

ij , S
t
ij},

[x]+ ≡ max(x, 0), exp(x) ≡ ex, qij = 1 − lij , and K
is the size of x. From Lemma 1, as τ → 0, TAL is close
to TRL and focuses more on hard negatives. Since multi-
ple positive pairs from the same identity may appear in the
mini-batch, S+

i2t(Ii) =
∑K

j=1 αijS(Ii, Tj) is the weighted
average similarity of positive pairs for image Ii, where
αij =

lij exp (S(Ii,Tj)/τ)∑N
k=1 lik exp (S(Ii,Tk)/τ)

. And, S+
i2t(Ti) is similar to

the definition of S+
i2t(Ii).

Lemma 1 TAL is the upper bound of TRL, i.e.,

Ltrl(Ii, Ti) =
[
m− S+

i2t(Ii) + S(Ii, T̂i)
]
+

+
[
m− S+

t2i(Ti) + S(Îi, Ti)
]
+
≤ Ltal(Ii, Ti),

(2)

where T̂i ∈ Ti = {Tj |lij = 0,∀j ∈ {1, 2, · · · ,K}} is the
hardest negative text for image Ii and Îi ∈ Ii = {Ij |lji =
0,∀j ∈ {1, 2, · · · ,K}} is the hardest negative image for
text Ii, respectively.

Proof 1 To prove Equation (2), we first take the image-to-
text direction as an example. For S(Ii, T̂i) in Equation (2),
we have that

S(Ii, T̂i) = max
Tj∈Ti

(S(Ii, Tj))

= max
Tj∈Ti

(
τ log exp (S(Ii, Tj))

1
τ

)
= τ log

(
max
Tj∈Ti

(
exp (S(Ii, Tj))

1
τ

))

≤ τ log

 ∑
Tj∈Ti

exp(S(Ii, Tj)/τ)


≤ τ log(

K∑
j=1

qij exp(S(Ii, Tj)/τ)),

(3)

where qij = 1− lij . Based on Equation (3), we have that

[
m− S+

i2t(Ii) + τ log(

K∑
j=1

qij exp(S(Ii, Tj)/τ))
]
+

≥
[
m− S+

i2t(Ii) + S(Ii, T̂i)
]
+
.

(4)

Similarly, in the text-to-image direction, we have that

[
m− S+

t2i(Ti) + τ log(

K∑
j=1

qji exp(S(Ij , Ti)/τ))
]
+

≥
[
m− S+

t2i(Ti) + S(Îi, Ti)
]
+
.

(5)

Thus, combining Equation (4) and Equation (5), we can get
Ltrl(Ii, Ti) ≤ Ltal(Ii, Ti). This completes the proof.



A.2. Derivation for Gradient

In this appendix, we provide more details of gradient deriva-
tion. For ease of representation and analysis, we only con-
sider one direction like [13] since image-to-text retrieval
and text-to-image retrieval are symmetrical. Besides, we
suppose that there is only one paired text for each image in
the mini-batch. Thus, TRL, TRL-S, and TAL are simplified
as follows:

Ltrl(Ii, Ti) =
[
m− v⊤

i ti + v⊤
i t̂i

]
+
,

Ltrls(Ii, Ti) =

K∑
j ̸=i

[
m− v⊤

i ti + v⊤
i tj

]
+
,

Ltal(Ii, Ti) =
[
m− v⊤

i t̂i + τ log(

K∑
j ̸=i

e(v
⊤
i tj/τ))

]
+
,

(6)

where t̂i, tj and ti are the hardest negative sample, nega-
tive sample, and positive sample of the anchor sample vi,
respectively. These ℓ2-normalized features are embedded
by the modality-specifical models, i.e., fΘv

(·) and fΘt
(·).

Due to the truncation operation [x]+, we only discuss the
case of L > 0 that could generate gradients. For TRL, the
gradients to the parameters Θv and Θt are:

∂Ltrl

∂Θv
=

∂Ltrl

∂vi

∂vi

∂Θv
,

∂Ltrl

∂Θt
=

∂Ltrl

∂t̂i

∂t̂i
∂Θt

+
∂Ltrl

∂ti

∂ti
∂Θt

.

(7)

Since the learning of normalized features can be viewed as
the movement process of points on a unit hyperplane, we
only consider the loss gradients with respect to vi, v̂i, and
ti are:

∂Ltrl

∂vi
= t̂i − ti,

∂Ltrl

∂ti
= −vi,

∂Ltrl

∂t̂i
= vi. (8)

For TRL-S, the gradients to the parameters Θv and Θt are:

∂Ltrls

∂Θv
=

∂Ltrls

∂vi

∂vi

∂Θv
,

∂Ltrls

∂Θt
=

∑
j∈Z

∂Ltrls

∂tj

∂tj
∂Θt

+
∂Ltrls

∂ti

∂ti
∂Θt

.
(9)

Thus, for vi, vj , and ti, the gradients are:

∂Ltrls

∂vi
=

∑
j∈Z

(tj − ti),
∂Ltrls

∂tj
= vi,∀j ∈ Z,

∂Ltrls

∂ti
= −

∑
j∈Z

vi = −|Z|vi,

(10)

where Z = {z |
[
m − S(Ii, Ti) + S(Ii, Tz)

]
+

> 0, z ̸=
i, z ∈ {0, · · · ,K}}. For our TAL, the gradients to the pa-

rameters Θv and Θt are:

∂Ltal

∂Θv
=

∂Ltal

∂vi

∂vi

∂Θv
,

∂Ltal

∂Θt
=

∑
j ̸=i

∂Ltal

∂tj

∂tj
∂Θt

+
∂Ltal

∂ti

∂ti
∂Θt

.
(11)

Thus, the gradients for vi, vj ti are:

∂Ltal

∂vi
=

K∑
j ̸=i

βjtj − ti =

K∑
j ̸=i

βj(tj − ti),

∂Ltal

∂ti
= −vi,

∂Ltal

∂tj
= βjvi,

(12)

where βj =
exp(v⊤

i tj/τ)∑K
k ̸=i exp(v

⊤
i tk/τ)

.

B. Dataset and Baseline Description
B.1. Datasets.

To verify the effectiveness and superiority of RDE, we use
three widely-used image-text person datasets to conduct ex-
periments. A brief introduction of these datasets is given as
follows:
• CHUK-PEDES [10] is the first large-scale benchmark to

dedicate TIReID, which includes 40,206 person images
and 80,412 text descriptions for 13,003 unique identities.
We follow the official data split to conduct experiments,
i.e., 11,003 identities for training, 1,000 identities for val-
idation, and the rest of the 1,000 identities for testing.

• ICFG-PEDES [4] is a widely-used benchmark collected
from the MSMT17 dataset [25] and consists of 54,522 im-
ages for 4,102 unique persons and each image has a cor-
responding textual description. We follow the data split
used by most TIReID methods [9, 21], i.e., a training set
with 3,102 identifies and a validation set with 1,000 iden-
tifies. Note that we uniformly used the validation perfor-
mance as the test performance due to its lack of a test set.

• RSTPReid [32] is another benchmark dataset constructed
from the MSMT17 dataset [25] for TIReID. RSTPReid
contains 20,505 images for 4,101 identities, wherein each
person has 5 images and each image is paired with 2
text descriptions. Following the official data split, we use
3,701 identities for training, 200 identities for validation,
and the remaining 200 identities for testing.

B.2. Baselines.

To verify the effectiveness and robustness of our method in
the NC scenario, we provide the comparison results with
5 baselines that have published code. We introduce each
baseline as follows:
• SSAN1 [4] is a local-matching method for TIReID, which

mainly benefits from a proposed multiview non-local net-
1https://github.com/zifyloo/SSAN



CUHK-PEDES ICFG-PEDES RSTPReid
Noise Methods R-1 R-5 R-10 mAP mINP R-1 R-5 R-10 mAP mINP R-1 R-5 R-10 mAP mINP

80%

SSAN Best 0.18 0.83 1.45 0.47 0.24 0.28 0.99 1.90 0.27 0.15 0.65 3.25 5.95 1.30 0.70
Last 0.13 0.67 1.46 0.42 0.21 0.18 1.01 1.77 0.25 0.14 0.65 2.95 5.85 1.32 0.68

IVT Best 34.03 55.49 66.16 33.90 23.29 21.10 37.10 45.64 13.68 2.32 15.15 30.00 40.50 14.98 7.79
Last 10.61 23.81 31.38 11.13 5.72 5.64 12.48 17.15 4.00 0.69 4.95 13.55 19.75 6.07 2.85

IRRA Best 38.63 56.69 64.18 34.60 21.84 28.19 44.14 51.27 14.36 1.41 29.65 46.65 54.50 23.77 11.32
Last 9.06 19.69 25.65 8.26 3.18 8.68 18.76 24.50 3.65 0.27 8.15 21.00 29.05 7.28 2.40

CLIP-C Best 57.38 78.05 84.97 51.08 34.83 44.84 65.24 73.27 24.27 3.42 47.80 72.70 81.75 37.50 18.09
Last 57.05 78.09 85.07 51.14 35.05 44.65 65.26 73.45 24.20 3.44 44.60 70.75 80.20 35.67 17.09

DECL Best 47.90 71.57 80.17 44.51 29.86 40.53 61.49 69.84 21.78 2.97 48.15 72.20 80.75 37.31 18.83
Last 46.57 70.19 78.48 42.93 27.91 39.91 61.16 69.51 21.56 2.89 45.85 71.05 81.00 35.34 16.35

RDE Best 64.99 83.15 89.52 57.84 41.07 56.02 74.00 80.62 30.67 4.60 53.40 76.70 85.55 39.71 18.28
Last 64.91 83.20 89.54 57.83 41.07 55.96 74.09 80.61 30.79 4.62 52.35 76.85 84.90 39.92 17.72

Table 1. Performance comparison under 80% noise rate on three benchmarks. “Best” means choosing the best checkpoint on the validation
set to test, and “Last” stands for choosing the checkpoint after the last training epoch to conduct inference. R-1,5,10 is an abbreviation for
Rank-1,5,10 (%) accuracy. The best and second-best results are in bold and underline, respectively.

work that could capture the local relationships, thus es-
tablishing better correspondences between body parts and
noun phrases. Besides, SSAN also exploits a compound
ranking loss to make an effective reduction of the intra-
class variance in textual features.

• IVT2 [21] is an implicit visual-textual framework, which
belongs to the global-matching method. To explore fine-
grained alignments, IVT utilizes two implicit semantic
alignment paradigms, i.e., multi-level alignment (MLA)
and bidirectional mask modeling (BMM). MLA aims to
see “finer” by exploring local and global alignments from
three-level matchings. BMM aims to see “more” by min-
ing more semantic alignments from random masking for
both modalities.

• IRRA3 [9] is a recent state-of-art global-matching
method that could learn relations between local visual-
textual tokens and enhances global alignments without
requiring additional prior supervision. IRRA exploits a
novel similarity distribution matching to minimize the KL
divergence between the similarity distributions and the
normalized label matching distributions for better perfor-
mance.

• CLIP-C is a quite strong baseline that fine-tunes the orig-
inal CLIP4 model with only clean image-text pairs. We
use the same version as IRRA, i.e., ViTB/16, for a fair
comparison and use InfoNCE loss [15] to optimize the
model.

• DECL5 [16] is an effective robust image-text match-
ing framework, which utilizes the cross-modal evidential
learning paradigm to capture and leverage the uncertainty
brought by noise to isolate the noisy pairs. Since TIReID
can be treated as the sub-task of instance-level image-text
2https://github.com/TencentYoutuResearch/PersonRetrieval-IVT
3https://github.com/anosorae/IRRA
4https://github.com/openai/CLIP
5https://github.com/QinYang79/DECL

matching, DECL also can be used to ease the negative im-
pact of NCs in TIReID. In this paper, we exploit the used
model of IRRA [9] as the base model of DECL for robust
TIReID.

C. The Results under Extreme Noise

To further verify the effectiveness and robustness of our
method, we report comparison results under extremely high
noise, i.e., 80%. From the results in Table 1, one can see that
our RDE achieves the best performance and can effectively
alleviate the performance degradation caused by noise over-
fitting. For example, compared with the ‘Best’ rows, our
RDE surpasses the best baselines by +7.56%, +5.95%, and
+3.5% in terms of Rank-1 on the three datasets, respec-
tively.

D. More Comparisons

In this section, we follow the organization of IRRA [9]
and provide more comparative experimental results on three
benchmarks in Tables 2 to 4. From the results, our RDE
achieves the best results and exceeds the best baselines, i.e.,
+0.92%, +2.63%, and +0.15% in terms of Rank-1 on three
datasets, respectively.

E. Study on the Selection Ratio

Figure 1 shows the variation of performance with different
selection ratio R. From the figure, one can see that too
large or too small R will cause suboptimal performance.
We think that a small R will cause too much information
loss and poor embedding presentations, while too large will
focus on too many meaningless features. For this reason,
we recommend R to be set between 0.3∼0.5. Thus, R is
set to 0.3 in all our experiments.



Methods Ref. Image Enc. Text Enc. R-1 R-5 R-10 mAP mINP

CMPM/C [30] ECCV’18 RN50 LSTM 49.37 - 79.27 - -
TIMAM [17] ICCV’19 RN101 BERT 54.51 77.56 79.27 - -
ViTAA [22] ECCV’20 RN50 LSTM 54.92 75.18 82.90 51.60 -
NAFS [7] arXiv’21 RN50 BERT 59.36 79.13 86.00 54.07 -
DSSL [32] MM’21 RN50 BERT 59.98 80.41 87.56 - -
SSAN [4] arXiv’21 RN50 LSTM 61.37 80.15 86.73 -
Lapscore [26] ICCV’21 RN50 BERT 63.40 - 87.80 - -
ISANet [28] arXiv’22 RN50 LSTM 63.92 82.15 87.69 - -
LBUL [24] MM’22 RN50 BERT 64.04 82.66 87.22 - -
Han et al.2021 BMVC’21 CLIP-RN101 CLIP-Xformer 64.08 81.73 88.19 60.08 -
SAF [11] ICASSP’22 ViT-Base BERT 64.13 82.62 88.40 - -
TIPCB [3] Neuro’22 RN50 BERT 64.26 83.19 89.10 - -
CAIBC [23] MM’22 RN50 BERT 64.43 82.87 88.37 - -
AXM-Net [5] MM’22 RN50 BERT 64.44 80.52 86.77 58.73 -
LGUR [18] MM’22 DeiT-Small BERT 65.25 83.12 89.00 - -
IVT [21] ECCVW’22 ViT-Base BERT 65.59 83.11 89.21 - -
CFine [27] TIP’23 CLIP-ViT BERT 69.57 85.93 91.15 - -
IRRA [9] CVPR’23 CLIP-ViT CLIP-Xformer 73.38 89.93 93.71 66.13 50.24
BiLMa [6] ICCVW’23 CLIP-ViT CLIP-Xformer 74.03 89.59 93.62 66.57 -
PBSL [20] ACMMM’23 RN50 BERT 65.32 83.81 89.26 - -
BEAT[14] ACMMM’23 RN101 BERT 65.61 83.45 89.54 - -
LCR2S [29] ACMMM’23 RN50 TextCNN 67.36 84.19 89.62 59.24
DCEL [12] ACMMM’23 CLIP-ViT CLIP-Xformer 75.02 90.89 94.52 - -
UniPT [19] ICCV’23 CLIP-ViT CLIP-Xformer 68.50 84.67 - - -
RaSa [1] IJCAI’23 ALBEFF ALBEFF 76.51 90.29 94.25 69.38
RaSaTCL [1] IJCAI’23 TCL TCL 73.23 89.20 93.32 66.43 -
TBPS [2] Arxiv’23 CLIP-ViT CLIP-Xformer 73.54 88.19 92.35 65.38 -

Our RDE - CLIP-ViT CLIP-Xformer 75.94 90.14 94.12 67.56 51.44

Table 2. Performance comparisons on the CUHK-PEDES dataset. The best results are in bold.

Methods R-1 R-5 R-10 mAP mINP

Dual Path [31] 38.99 59.44 68.41 - -
CMPM/C [30] 43.51 65.44 74.26 - -
ViTAA [22] 50.98 68.79 75.78 - -
SSAN [4] 54.23 72.63 79.53 - -
IVT [21] 56.04 73.60 80.22 - -
ISANet [28] 57.73 75.42 81.72 - -
CFine [27] 60.83 76.55 82.42 - -
IRRA [9] 63.46 80.25 85.82 38.06 7.93
BiLMa [6] 63.83 80.15 85.74 38.26 -
PBSL [20] 57.84 75.46 82.15 - -
BEAT[14] 58.25 75.92 81.96 - -
LCR2S [29] 57.93 76.08 82.40 38.21 -
DCEL [12] 64.88 81.34 86.72 - -
UniPT [19] 60.09 76.19 - - -
RaSa [1] 65.28 80.40 85.12 41.29 -
RaSa∗TCL [1] 63.29 79.36 84.36 39.23 -
TBPS [2] 65.05 80.34 85.47 39.83 -

Our RDE 67.68 82.47 87.36 40.06 7.87

Table 3. Performance comparisons on the ICFG-PEDES dataset.
The best results are in bold. ‘*’ indicates our reproducible results.

Methods R-1 R-5 R-10 mAP mINP

DSSL [32] 39.05 62.60 73.95 - -
SSAN [4] 43.50 67.80 77.15 - -
LBUL [24] 45.55 68.20 77.85 - -
IVT [21] 46.70 70.00 78.80 - -
CFine [27] 50.55 72.50 81.60 - -
IRRA [9] 60.20 81.30 88.20 47.17 25.28
BiLMA [6] 61.20 81.50 88.80 48.51 -
PBSL [20] 47.80 71.40 79.90 - -
BEAT[14] 48.10 73.10 81.30 - -
LCR2S [29] 54.95 76.65 84.70 40.92 -
DCEL [12] 61.35 83.95 90.45 - -
RaSa [1] 66.90 86.50 91.35 52.31 -
RaSa∗TCL [1] 65.20 84.05 89.85 50.14 -
TBPS [2] 61.95 83.55 88.75 48.26 -

Our RDE 65.35 83.95 89.90 50.88 28.08

Table 4. Performance comparisons on the RSTPReid dataset. The
best results are in bold. ‘*’ indicates our reproducible results.

F. Ablation Study
F.1. Ablation analysis for TSE

To verify the design rationality of TSE in our RDE, we con-
duct dedicated ablation experiments on TSE. The results are
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Figure 1. Variation of performance with different R ∈ [0, 1].
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Figure 2. The examples of noisy correspondence identified by
CCD on the CUHK-PEDES dataset.

A man in his thirties 
has short black hair. 
He is wearing a black 
puffer jacket and 
navy-blue pants. He 
is also wearing 
brown wingtip shoes. 
He is carrying a 
black backpack and 
holding a white 
cellphone.

A woman with short 
black hair is wearing a 
long black coat and 
black gloves. He is 
carrying a brown 
handbag in one hand 
and a white shopping 
bag with red detailing 
in the other.

A man in a red beanie 
is wearing a blue 
insulated jacket with 
slim-fitting purple 
jeans. He is pairing it 
with black with white 
detailing and is 
carrying a black 
backpack with gray 
detailing. He also had 
a strap running 
diagonally down his 
torso.

A fit man has short 
black hair and he looks 
he is in his early thirties. 
He is wearing a black 
fur-lined hooded puffer 
jacket with a black and 
blue checkers pattern 
jogger pants. He is 
wearing black and white 
sports shoes that have 
orange laces and green 
colored details and also 
holding a phone.

A young man in his 
thirties with short 
black hair is wearing a 
blue blouson jacket 
with long sleeve and a 
pair of blue fitted 
pants. He is also 
wearing grey canvas 
shoes.

Bright light

A man in his early 
30's has a black 
medium length 
straight hair. He is 
wearing a sea-green 
colored hoodie 
bomber jacket, with 
a pair of black pants. 
He is also wearing a 
pair of black formal 
shoes. 

(d) (e) (f)

(a) (b) (c)

Figure 3. The examples of noisy correspondence identified by
CCD on the ICFG-PEDES dataset.

reported in Table 5. In the table, TSE′ means that the token
features encoded by CLIP are directly used for aggregation
to obtain the embedding representations instead of conduct-
ing embedding transformation. Also, we show the impact
of different pooling strategies on performance. From the

The man is 
wearing a black 
coat, black 
sweatpants, and 
black shoes.He
has short white 
hair.He is 
riding his 
bike.He was 
carrying a 
backpack.He
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and black 
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bystander.

The long-
haired girl, 
carrying a 
black bag, 
wearing a black 
and white 
down jacket, 
black running 
shoes and black 
sweatpants, 
walked by the 
side of the road 
in a hurry

A young 
man, 
carrying a 
blue bag, 
wearing a 
black jacket, 
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and black 
canvas shoes, 
was walking 
down the 
street door

A young 
woman, 
wearing 
black glasses, 
a plain white 
coat, blue 
jeans, and 
black 
running 
shoes, 
walked 
along the 
road

A man with 
black hair, 
wearing a 
gray and 
black shirt, 
black pants 
and black 
canvas shoes, 
carrying a 
bag, is 
walking

(a) (b) (c)

(d) (e) (f)

Figure 4. The examples of noisy correspondence identified by
CCD on the RSTPReid dataset.

results, our standard version of TSE obtains the best perfor-
mance, i.e., conducting the embedding transformation and
using the max-pooling strategy to obtain the TSE represen-
tations.

Methods Pool R-1 R-5 R-10 mAP mINP

TSE′ Avg. 67.22 84.96 90.03 60.22 43.84
TSE′ TopK. 67.35 85.36 90.51 60.21 43.54
TSE′ Max. 67.46 85.17 90.58 60.11 43.45
TSE Avg. 67.43 85.19 90.50 60.42 43.97
TSE TopK. 68.27 86.03 90.79 60.95 44.37
TSE Max. 71.33 87.41 91.81 63.50 47.36

Table 5. Performance comparisons with state-of-the-art methods
on the RSTPReid dataset. ’Avg.’, ’TopK.’, and ’Max.’ indicate the
use of average-pooling, topK-pooling (K=10), and max-pooling
strategies, respectively.

Noise No. Sb St CCD Loss R-1 R-5 R-10 mAP mINP

80%

#1 ✓ ✓ ✓ TAL 64.99 83.15 89.52 57.84 41.07
#2 ✓ ✓ ✓ TRL 2.18 6.45 10.48 2.65 0.83
#3 ✓ ✓ ✓ TRL-S 51.62 74.53 82.21 46.15 30.12
#4 ✓ ✓ ✓ SDM 58.32 79.03 85.79 51.27 34.00
#5 ✓ ✓ TAL 63.56 82.59 88.84 56.69 39.71
#6 ✓ ✓ TAL 61.70 81.61 87.95 55.11 38.34
#7 ✓ ✓ TAL 41.03 62.62 71.99 37.29 23.54

Table 6. Ablation studies on the CHUK-PEDES dataset.

F.2. Ablation study on High Noise

In this appendix, we provide more ablation studies on the
CUHK-PEDES dataset to investigate the effects and con-
tributions of each proposed component in RDE. The ex-
perimental results are shown in Table 6. The observations
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Figure 5. Test performance (Rank-1) versus epochs on three datasets with 20% noise.
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Figure 6. Test performance (Rank-1) versus epochs on three datasets with 50% noise.
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Figure 7. Test performance (Rank-1) versus epochs on three datasets with 80% noise.

and conclusions are consistent with those in the main text,
which also demonstrate the effectiveness of our method.

G. Case Study

In this section, we show a large number of real examples of
noisy pairs in three public datasets without synthetic NCs
in Figures 2 to 4, which are identified by CCD. Note that
for privacy and security, the face areas of people in all im-
ages are blurred. From these examples, one can see that

there are various reasons for noisy correspondences, e.g.,
occlusion (e.g., Figure 2(a,b)), lighting (e.g., Figure 3(f)),
and inaccurate noisy text descriptions (e.g., Figure 2(c,f)
and Figure 4(a-f)). But all in all, these noisy pairs are real
in these datasets and actually break the implicit assump-
tion that all training image-text pairs are aligned correctly
and perfectly at an instance level. Thus, we reveal the noisy
correspondence problem in TIReID and propose a robust
method, i.e., RDE, to particularly address it.



(b) The pedestrian with 
long, dark hair carries a 
backpack. She wears a 
loose top, denim 
bottoms, and sandals. 

(d) This person has a 
white band in their  hair 
he or she is wearing a 
pancho in salmon color 
with a yellow bend on 
the bottom as well as a 
dark tight pants and 
dark shoes.

(a) A woman walking 
visible from the back is 
wearing a white shirt, 
black pants and has a 
green bag slung over her 
back and carrying a 
black object in her right 
hand.

(c) This person wearing 
the sneakers and dark 
hoodie is walking with a 
large shoulder bag.

Figure 8. Comparison of top-10 retrieved results on the CUHK-PEDES dataset between the baseline IRRA (the first row) and our RDE
(the second row) for each text query. The matched and mismatched person images are marked with red and blue rectangles, respectively.
All face areas of people in images are blurred for privacy and security.



H. Robustness Study
For a comprehensive robustness analysis, we provide more
performance curves versus epochs in Figures 5 to 7. It
can be seen from the Figure 5 that when the noise rate
is 20%, each baseline shows a certain degree of robust-
ness, and there is no obvious performance degradation due
to over-fitting noisy pairs. However, as the noise rate in-
creases, the non-robust methods (SSAN, IVT, and IRRA)
all show a curve that first rises and then falls. This tendency
is caused by the memorization effect that DNNs tend to
learn simple patterns before fitting noisy samples. Besides,
we can also find that when the noise rate is 80%, SSAN
fails and other non-robust methods (IVT and IRRA) also
have a serious performance drop. By contrast, thanks to the
CCD and TAL, our RDE can learn accurate visual-semantic
associations by obtaining confident clean training image-
text pairs, which can effectively and directly prevent over-
fitting noisy pairs, thus achieving robust cross-modal learn-
ing. From these figures, our method not only exhibits strong
robustness but also achieves excellent re-identification per-
formance.

I. Qualitative Results
To illustrate the advantages of our RDE, some retrieved ex-
amples for TIReID are presented in Figure 8. These results
are obtained by testing the model trained on the CUHK-
PEDES dataset with 20% NCs. From the examples, one
can see that our RDE obtains more accurate and reasonable
re-identification results. Simultaneously, in some inaccu-
rate results (e.g., the results (b) and (d)) obtained by IRRA,
we find that the visual information of the retrieved image
often only matches part of the text query, which indicates
that the model cannot learn complete alignment knowledge.
We think the reason is that the NCs mislead the model of
IRRA to focus on some wrong visual-semantic associations.
In contrast, our RDE could filter out erroneous correspon-
dences to learn reliable and accurate cross-modal knowl-
edge, thus achieving high robustness and better results.
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