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In this supplementary material, we provide additional ex-
planations §A and results §B that cannot fit into the main
paper due to the page limit. Finally, we discuss the limita-
tions of our method in §C.

A. Additional Explanations
A.1. The Details of Benchmark Datasets

To achieve a comprehensive study, we conduct extensive
experiments in the main paper, including datasets CIFAR-
100 [7], Tiny-ImageNet [8], and ImageNet-Subset [1], and
ImageNet-Full [1].

CIFAR-100 is a well-known image classification dataset
that contains 32×32 images for 100 classes. The training
set contains 50,000 images with 500 images per class, and
the validation set contains 10,000 images with 100 per class.
ImageNet-Full is a large-scale classification dataset with
1,000 classes, that contains about 1.2 million images for
training and 50,000 images for validation. Tiny-ImageNet
is a subset of 200 classes from ImageNet, with image size
rescaled to 64×64. The training set contains 100,000 im-
ages with 500 per class. The validation and evaluation set
both contain 10,000 images with 50 per class. ImageNet-
subset is a 100-class subset from ImageNet, where each
class contains 1,300 training images and 50 validation im-
ages.

A.2. The Details of Evaluation Metrics

Following most previous works [10, 11], we report average
incremental accuracy AN and average forgetting FN as the
main metric. The AN reflects the average performance of
the model on all tasks, while FN measures the ability to
resist catastrophic forgetting. A desired CIL learner needs
to simultaneously achieve a high AN and a low FN .

Average incremental accuracy is computed as the aver-
age result of the accuracy ai of all phases (initial and incre-
mental):

AN =
1

N + 1

N∑
i=0

ai. (S.1)

Average forgetting is defined as:

FN =
1

N

N−1∑
i=0

f i
N , (S.2)

where f i
N = maxt∈i,...,N−1 (at,i − aN,i) and am,n is the

accuracy of task n after training task m. f i
N reflects the

accuracy drop of task i between the peak accuracy at,i and
the accuracy aN,i of last phase.

A.3. The Details of Training

We utilize RandomResizedCrop, RandomHorizontalFlip,
and ColorJitter for data augmentation, similar to [10]. Dur-
ing the initial task training phase, we optimize all model
parameters. For incremental updates, only the parameters
of the last stage are updated to mitigate the risk of forget-
ting previously learned knowledge. In training the generator
and discriminator, we employ the WGAN framework with
gradient penalty [4].

A.4. Proof for Main Paper Eq.2

Let ϕDo and ϕD̂o
be the density functions of Do and D̂o

respectively. Then, we have:

ϵDn(hn, fn) + ϵDo(hn, fo)

= ϵDn(hn, fn) + ϵDo(ho, fo)− ϵDo(ho, fo) + ϵDo(hn, fo)

≤ ϵDn(hn, fn) + ϵDo(ho, fo) + |ϵDo(hn, fo)− ϵDo(ho, fo)|
≤ ϵDn(hn, fn) + ϵDo(ho, fo) + Ex∼Do [|hn(x)− ho(x)|]
= ϵDn(hn, fn) + ϵDo(ho, fo) + ϵD̂o

(hn, ho)− ϵD̂o
(hn, ho)

+ ϵDo(hn, ho)

≤ ϵDn(hn, fn) + ϵDo(ho, fo) + ϵD̂o
(hn, ho)

+ |ϵDo
(hn, ho)− ϵD̂o

(hn, ho)|
≤ ϵDn

(hn, fn) + ϵDo
(ho, fo) + ϵD̂o

(hn, ho)

+

∫
|ϕDo

(x)− ϕD̂o
(x)||hn(x)− ho(x)|dx

≤ ϵDn(hn, fn) + ϵDo(ho, fo) + ϵD̂o
(hn, ho) + d1(D̂o,Do)
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B. Additional Results
B.1. Detailed Values of the Curves

For a fair comparison with subsequent work, we provide the
detailed values of all accuracy curves in Fig. 5 of the main
paper. The results are listed in Tab. S.3, S.4, S.5.

B.2. Results on Modified 32-layer ResNet

In tab. S.2, we report average incremental accuracy AN and
last phase accuracy AL on CIFAR-100 using a modified 32-
layer ResNet [5]. The means and standard deviations are re-
ported of three runs. In Fig. S.2, we present a comprehen-
sive comparison between DCMI and two preceding inver-
sion methods, ABD [9] and RDFCIL [3]. The results show
that our method achieves comparable performance with the
previous methods under 5 phases, while notably surpassing
them under 10 and 25 phases. This highlights the superior-
ity of our method, particularly in scenarios involving long
sequence increments.

B.3. Sensitive Analysis of Hyper-parameter

We perform a sensitivity analysis on the hyper-parameter
λ in Eq.13 of the main paper. As illustrated in Fig. S.1,
the results of 5 and 10 phases are less sensitive to λ than
20 phases. Optimal performance is obtained when selecting
λ = 0.5.

Figure S.1. Sensitive analysis of λ on CIFAR-100.

B.4. Time complexity

We evaluate the training time by comparing our method
with non-generative (PASS [10]) and generative (ABD [9])
approaches with the same training epochs, as shown in Tab.
S.1. ABD experiences prolonged training times due to its
generator requiring larger epochs, and PASS is relatively
inefficient due to LabelAug in each incremental task. Our
method demonstrates efficiency in comparison.

Method CIFAR-100 Tiny-ImageNet
P=5 P=10 P=20 P=5 P=10 P=20

PASS 774 389 236 5978 3018 1535
ABD 750 599 542 3462 2433 1809
Ours 542 342 272 3095 1653 894

Table S.1. Comparison of the training time (s) during each phase.

C. Limitations
Similar to other generative methods, DCMI requires time

to train the generator. Meanwhile, replaying generated data
inevitably increases computational costs. Additionally, the
training of the generator relies on new class data, which im-
poses certain requirements on the amount of new class data,
making it difficult to apply with the few shot increments. A
potential solution is to involve domain-consistent extra data.
Finally, the current methodology may not seamlessly extend
to other critical tasks, such as segmentation and detection.
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Figure S.2. Accuracy for each phase on CIFAR-100 using a modified 32-layer ResNet.

Method P=5 P=10 P=20
AN (↑) AL(↑) AN (↑) AL(↑) AN (↑) AL(↑)

UCIR [6] 65.6±1.0 55.7±0.9 63.5±1.1 53.2±0.7 60.3±1.1 50.1±0.4

PODNet [2] 66.8±1.3 56.2±1.0 63.9±1.1 52.5±0.6 61.6±1.0 49.1±0.3

ABD [9] 62.4±1.2 50.6±1.1 59.0±1.9 43.7±2.4 48.9±1.9 25.3±1.1

R-DFCIL [3] 64.8±1.6 54.8±0.8 61.7±1.2 49.7±0.6 50.0±0.8 30.0±0.6

DCMI 64.2±1.2 54.1±0.6 63.6±1.3 53.4±0.9 62.0±1.5 50.1±1.0

Table S.2. Average accuracy on CIFAR-100 using a modified 32-layer ResNet. Results from [3].

Dataset Phase
0 1 2 3 4 5

CIFAR-100 79.5 72.6 68.8 65.4 62.0 59.3
Tiny-ImageNet 65.7 58.8 55.8 52.5 49.3 46.5
ImageNet-Subset 84.9 76.8 71.4 67.5 62.8 59.2

Table S.3. Detailed results (%) of classification accuracy under 5 phases.

Dataset Phase
0 1 2 3 4 5 6 7 8 9 10

CIFAR-100 79.5 75.7 72.2 69.5 67.8 66.1 64.3 62.8 60.5 59.1 57.6
Tiny-ImageNet 65.7 61.5 58.6 56.1 55.5 53.6 51.7 50.2 48.1 46.6 45.2
ImageNet-Subset 84.9 81.0 76.6 73.6 70.7 69.4 67.0 64.4 62.3 60.8 58.9
ImageNet-Full 76.4 72.2 68.7 65.9 63.0 60.6 58.4 56.4 54.5 53.0 51.5

Table S.4. Detailed results (%) of classification accuracy under 10 phases.

Dataset Phase
0 1 2 3 4 5 6 7 8 9

CIFAR-100 81.1 77.8 76.2 73.8 72.3 70.2 68.6 66.7 65.1 63.8
Tiny-ImageNet 65.7 63.0 61.4 60.0 58.4 57.4 55.6 55.0 54.4 53.1
ImageNet-Subset 86.2 83.1 78.7 76.3 73.8 72.2 70.1 67.7 66.1 65.6

Dataset Phase
10 11 12 13 14 15 16 17 18 19 20

CIFAR-100 63.0 61.6 60.9 59.5 58.2 57.2 55.8 54.5 53.6 52.6 51.9
Tiny-ImageNet 52.3 51.2 50.3 49.2 48.2 47.2 46.0 45.1 43.9 42.9 42.1
ImageNet-Subset 63.5 63.1 62.2 61.1 59.2 57.7 56.2 55.0 53.7 53.0 51.6

Table S.5. Detailed results (%) of classification accuracy under 20 phases.
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