
Masked AutoDecoder is Effective Multi-Task Vision Generalist

Supplementary Material

A. Implementation Details

Tab. 1 shows the default settings of our experiments. Most
of the hyper-parameter setting and training strategies fol-
low DETR [1]. We adopt the AdamW optimizer with a
learning rate of 1e-4 for all the experiments. The backbone
is fine-tuned with a smaller learning rate of 1e-5. We use
scale augmentation for ResNet-50 and Swin-Base models.
Specifically, the shortest side of the input image is resized
to between 480 and 800 pixels and randomly cropped with
a probability of 0.5. For the ViT-Base model, we use Large-
Scale Jittering (LSJ) [5] with a fixed image size of 1024 fol-
lowing ViTDet [7] and Pix2SeqV2 [3]. The resizing range
is set to [0.3, 2.0]. We essentially follow the architecture
configurations of ViT-Base from ViTDet and EVA-02 [4]
with the alternated windowed attention and global attention
mechanisms and extract the feature map with a stride of 32
from its simple feature pyramid network. For training time,
it takes about 48 hours to train MAD-Resnet50 on 4 A100
GPUs.

B. Autoregressive Decoding

We convert MAD into an autoregressive variant for com-
parison. It follows the same architecture as well as training
settings as MAD with a few modifications on tokenization
of task sequences, attention mechanism, and decoding pro-
cess.

For tokenization, we adopt similar approaches as in
MAD to construct task sequences for instance segmenta-
tion, keypoint detection, and image captioning, while fol-
lowing pix2seq [2] to build object detection sequences that
the ground-truth objects are placed at the beginning of se-
quences. For all tasks, we add < start > tokens at the
start of the input sequences. During training, we add the
< end > tokens at the end of the original target sequences.

For the attention mechanism, the self-attention layer in
the decoder is applied with a triangular causal mask for uni-
directional attention.

At inference time, the task sequences are recursively
generated, starting from the < start > token, and gen-
erating up to the maximum length corresponding to each
task (instead of stopping at the < end > token). We adopt
the argmax sampling strategy and cache the KV features of
previous generation steps in the self-attention layers for ac-
celeration. Although some other complex sampling strate-
gies, i.e., beam searching or nucleus sampling [6] may im-
prove performance, these strategies would also further slow
down the inference speed of autoregressive decoding.

Table 1. Experimental Settings.

(a) Model with ResNet-50.

config value

epoch 50
optimizer AdamW
learning rate 1e-4
learning rate scheduler multi-step scheduler
learning rate drop epoch 40
weight decay 1e-4
batch size 16
image size 800 × 1333
image augmentation MultiScaleResize

(b) Model with Swin-Base.

config value

epoch 300
optimizer AdamW
learning rate 1e-4
learning rate scheduler multi-step scheduler
learning rate drop epoch 240
weight decay 1e-4
batch size 32
image size 800 × 1333
image augmentation MultiScaleResize

(c) Model with ViT-Base.

config value

epoch 100
optimizer AdamW
learning rate 1e-4
learning rate scheduler multi-step scheduler
learning rate drop epoch 80
weight decay 1e-4
batch size 32
image size 1024 × 1024
image augmentation LargeScaleJitter

C. Task Weighting

In Fig. 1, we search for the appropriate loss weight for each
task. We first evaluate object detection performance and ob-
tain the optimal loss weight of 1.5. Then we introduce the
instance segmentation. As Fig. 1b shows, both tasks per-
form well over a wide range of weights, with only small
fluctuations. We thus simply take a weight of 2.7 for in-
stance segmentation. For keypoint detection, it seems to
conflict with the existing tasks, and increasing its weight
would hinder the performance of object detection and in-
stance segmentation. According to the trade-off of perfor-
mance, the keypoint detection task is weighted by a factor
of 0.5. Finally, we add the image captioning task, where we



(a) Instance segmentation Weights. (b) Instance segmentation Weights. (c) Keypoint detection weights. (d) Image captioning weights.

Figure 1. Performance with different loss weights by gradually adding new tasks to the existing tasks.

find that a weight of 0.3 is appropriate for preserving the
performance of existing vision tasks.

References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with Transformers. In ECCV, 2020. 1

[2] Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Ge-
offrey Hinton. Pix2seq: A language modeling framework for
object detection. arXiv preprint arXiv:2109.10852, 2021. 1

[3] Ting Chen, Saurabh Saxena, Lala Li, Tsung-Yi Lin, David J
Fleet, and Geoffrey E Hinton. A unified sequence interface
for vision tasks. Advances in Neural Information Processing
Systems, 35:31333–31346, 2022. 1

[4] Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xin-
long Wang, and Yue Cao. Eva-02: A visual representation for
neon genesis. arXiv preprint arXiv:2303.11331, 2023. 1

[5] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-
Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Simple
copy-paste is a strong data augmentation method for instance
segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2918–2928,
2021. 1

[6] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin
Choi. The curious case of neural text degeneration. arXiv
preprint arXiv:1904.09751, 2019. 1

[7] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Ex-
ploring plain vision transformer backbones for object detec-
tion. In Computer Vision–ECCV 2022: 17th European Con-
ference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part IX, pages 280–296. Springer, 2022. 1


	. Implementation Details
	. Autoregressive Decoding
	. Task Weighting

