
Supplementary Material for
“RichDreamer: A Generalizable Normal-Depth Diffusion Model for

Detail Richness in Text-to-3D”

Lingteng Qiu1,3*† Guanying Chen2,1* Xiaodong Gu3*

Qi Zuo3 Mutian Xu1 Yushuang Wu2,1 Weihao Yuan3 Zilong Dong3

Liefeng Bo3, Xiaoguang Han1,2‡

1SSE, CUHKSZ 2FNii, CUHKSZ 3Alibaba Group

Contents

1. More Details for Normal-Depth Diffusion 1

1.1. Pre-training on the LAION Dataset 1

1.2. Fine-tuning on Synthetic Dataset 2

2. More Details for Albedo Diffusion Model 4

3. More Details for Geometry Generation 4

4. More Details for Appearance Modeling 5

5. More Details for the User Study 5

6. Ablation Study about Joint Distribution of Nor-
mal and Depth 5

7. Consistency of Normal and Depth 6

8. Failure Case and Limitations 6

9. More Results 7

9.1. Comparison with SweetDreamer 7

9.2. Comparison with Fantasia3D 7

9.3. Discussion for Ours (Sphere) and Ours (NeRF) 7

9.4. More Visual Results 7

1. More Details for Normal-Depth Diffusion
1.1. Pre-training on the LAION Dataset

Training of VAE We initialize the parameters of our
model with the pre-trained weights of SD 2.1. Specifically,
we modify the input channels of the VAE from 3 to 4, and
the weights of the newly added channel are initialized as
the average of the original weights. We do not modify the
number of channels in the latent space of our VAE, which
remains at 4 channels.

For VAE fine-tuning, we randomly sample the training
data from LAION-Aesthetics V1 [7], selecting data with
aesthetics scores larger than 8.0, considering the need for
high-quality training data. The training dataset consists of
8 million training samples.

We apply center cropping on the training images and
resize them to 384 × 384. We employ random rotation
and flipping of the images to augment our training dataset.
Subsequently, we use augmented images as inputs to the
monocular prior models (NormalBae [1] and Midas-3.1 [5])
to obtain corresponding estimates of the normal and depth.
Notably, we perform depth normalization on the predicted
depth values, scaling them from -1 to 1. This normalization
step is necessary since the original depth predictions are in
the form of real values. These estimated images are then
resized to a resolution of 256 × 256 and serve as the input
for the VAE.

During the training phase, following the latent diffusion
model [6], we employ the Adam optimizer with a learn-
ing rate of 5e-5 to optimize our VAE model. To ensure a
well-behaved latent space, we incorporate KL regulariza-
tion loss. Moreover, to further improve the quality of the
generated images, we train an auxiliary discriminator on
the output of the VAE. The weights of the KL regulariza-

* Equal contribution.
† Work done during internship at Alibaba.
‡ Corresponding author: hanxiaoguang@cuhk.edu.cn.

1

Figure S1. Text to Normal-Depth sampling results.

tion and discriminator are set to 1e-6 and 0.5, respectively.
For each iteration, the batch size is set to 1024. The training
process is conducted on 8 A100-80G GPUs for two weeks,
reaching a total of 100K iterations.

Training of UNet Diffuser Notably, we maintain the
original structure of the UNet model as the channels of the
latent remain unchanged. During the training phase, we ran-
domly sample data from the Laion-2B-en dataset. We per-
form a center crop on the sampled images and resize them
to a resolution of 512 pixels. Subsequently, these images
are passed through the monocular prior models and the en-
coder of the trained VAE. The output of this process serves
as the input of the UNet model.

We follow the strategies utilized in the latent-diffusion
model [6] to train our Normal-Depth diffusion model.
Specifically, we first train our Normal-Depth diffusion
model using the entire Laion-2B-en dataset. After 121,000
iterations of training, we proceed to sample our data from
the “Laion-Aesthetics v2 5+” subset. This subset contains
images with aesthetics scores greater than 5, and we only
select images with an unsafety probability higher than 0.1.
The fine-tuning process continues for about 167,000 itera-
tions at a resolution of 512 × 512. To enable classifier-free
guidance sampling, we incorporate a 10% dropping of the
text-conditioning. We utilize the Adam optimizer with a

learning rate of 1e-4 to optimize our Normal-Depth diffu-
sion model. For each iteration, the batch size is set to 1024.
This process costs 11,520 GPU hours.

Text to Normal-Depth Sampling Figure S1 shows the
sampling results of our Normal-Depth diffusion model
trained on the Laion-2B datasets. As shown in the figure,
the sampled normal and depth are not only highly consis-
tent with the textual description but also with high qual-
ity. We set the classifier-free guidance scale to 7.5, with 50
DDIM [9] steps.

1.2. Fine-tuning on Synthetic Dataset

Multi-view Normal-Depth Diffusion Fine-tune Thanks
to the open-source large-scale Objaverse dataset [2], we
fine-tune our Normal-Depth diffusion model on Objaverse
to improve its performance for 3D generation tasks. To
avoid the Janus problem, following MVDream [8], we fine-
tune the Normal-Depth Diffusion model pretrained using
multi-view diffusion. Particularly, we use 4 images of or-
thogonal camera views as the input for the diffusion model
and apply a two-layer MLP to embed the extrinsic camera
matrix, which is added as a residual to the time embedding.

Figure S2 illustrates the sampling results of our multi-
view Normal-Depth Diffusion model, where the classifier-
free guidance scale is set to 10 and the negative prompt is

Figure S2. Sampling results of our Normal-Depth diffusion model
fine-tuned on the Objaverse dataset.

set to null.

Depth Normalization For a synthetic dataset, we can di-
rectly obtain its depth values. Since our Normal-Depth Dif-
fusion process involves normalized depth during training, it
is necessary to normalize the range of synthetic depth. To
better normalize the depth values, we can introduce a near
plane and a far plane to restrict the depth range to [-1, 1].
By defining these planes, we can map the actual depth val-
ues to the normalized range. Considering our synthetic data
is confined within a 0.5 uint cubic volume, we define the
distance from the object’s center point to the near plane and
far plane as 0.5

√
3. After defining the near and far planes,

we can normalize the depth values of our synthetic data.
However, the process of normalizing depth is not trivial.

Midas [4] estimates depth in the form of disparity, which is
a relative measure of the difference in pixel coordinates and
is inversely related to depth.

One straightforward approach is to normalize the dispar-
ity of synthetic data directly. For simplicity, we assume that
the synthetic object is located at the coordinate origin. The
equation for normalizing the disparity is as follows:

Disp(z) =
1

dcam−z − 1
dcam+

√
3l

1
dcam−

√
3l
− 1

dcam+
√
3l

=
(
√
3l + z) · (dcam −

√
3l)

2
√
3l · (dcam − z)

.

(1)

where z represents the depth value between the given point
and the original plane, dcam denotes the depth value from
the origin plane to the camera, and l represents the size of
the cube that confines the object, as illustrated in Fig. S3.

From the equation, it is evident that the normalized dis-
parity lacks the desirable property of scale invariance. Con-
sider an example: for a fixed camera distance (dcam), if we
double the values of l and z, the resulting values will differ
from the original l and z values. Similarly, for the same val-
ues of l and z, different camera distances will yield different
normalized disparities.

Original Plane Far PlaneNear Plane

camera view
l3

Camera Plane

Point

camd

l3

z

Figure S3. Depth normalization figure.

orange backpack

backpack with the words CV printed on it

Figure S4. Depth-Condition Albedo diffusion Model.

During the optimization process of text to 3D, we ran-
domly sample different camera distances. This randomness
further exacerbates the lack of scale invariance, introducing
significant noise into the optimization process. As a conse-
quence, achieving accurate results becomes more challeng-
ing due to the varying scales, which can adversely affect the
convergence and stability of the optimization algorithm.

To address the aforementioned issue, we propose the use
of reverse depth as an alternative to disparity normalization.
The reverse depth is defined as follows:

RevDepth(z) =
(dcam +

√
3l)− (dcam − z)

(dcam +
√
3l)− (dcam −

√
3l)

=

√
3l + z

2
√
3l

.

(2)

From the equation, it is obvious that the normalization value
is independent of dcam and remains unchanged when the
variables l and z scale proportionally. For the sake of sim-
plicity, in the following content, the depth refers to normal-
ized reverse depth.

2. More Details for Albedo Diffusion Model
Depth-Conditioned Albedo Diffusion Fine-tuning Re-
garding the training of the albedo model under the depth
condition, we resize the normalized depth image and con-
catenate it with the latent space of the VAE. It means the
number of channels in the UNet’s input expands from 4
to 5. We initialize the parameters of the Albedo-Diffusion
Model with the pre-trained weights of SD 2.1. For the addi-
tional dimension in the input channel of the UNet, we set its
weights to zero values. To alleviate the multi-face problem
in the generated texture, we also employ the same multi-
view strategy used in the multi-view Normal-Depth Diffu-
sion model to train our albedo diffusion model (see Fig. S4
for sampling results).

3. More Details for Geometry Generation
Our Normal-Depth diffusion model can be applied to opti-
mize DMTet and NeRF. To better verify the effectiveness of
our Normal-Depth Diffusion model, we design two model
variants for text-to-3D. The first model, denoted as Ours
(Sphere), initializes the DMTet with a Sphere for geometry
generation. The second model, denoted as Ours (NeRF),
first optimizes a NeRF with our Normal-Depth diffusion
model and then converts the NeRF to DMTet as an initial-
ization for geometry generation.

In the paper, the geometry generation loss function is de-
fined as:

LGeo = λSDLSD
SDS−Normal + λNDLND

SDS−ND, (3)

More Details for Ours (Sphere) The geometry optimiza-
tion in Ours (Sphere) consists of two stages: a coarse shape
optimization stage and a refinement stage. For the coarse
shape optimization stage, we follow the approach of Fan-
tasia3D, where we directly resize the rendered normal and
depth maps as the latent space features to quickly optimize
to obtain a coarse shape. In the refinement stage, we utilize
the latent features obtained from the VAE to enhance the
details of geometry.

Specifically, our DMTet is initialized from a sphere. In
terms of coarse shape optimization, we set λSD and λND
to 0.5 and 1.0, respectively. When it comes to refinement
optimization, both λND and λSD are set to 1.0. The negative
prompt “low quality” is used in both diffusion models. The
classifier-guided scale is set to 100 and 50 in SD 2.1 and the
Normal-Depth diffusion model, respectively. For the time
sampling schedule, we adopt a uniform sampling strategy
of annealing from [0.5, 0.98] to [0.05, 0.5] when we switch
from the coarse to refinement stage.

Ours (Sphere) is optimized on a single Nvidia A100-80G
GPU for 3000 iterations (1500 iterations for the coarse stage
and 1500 iterations for the fine stage), where we use the

A bulldog wearing a black pirate hat, 3d asset

a robot tiger

Simba, the lion cub from The Lion King, standing
majestically on Pride Rock, character

a ghost eating a hamburger

Ours (NeRF)
w/o DMTet

Ours (NeRF)

Ours (NeRF)
w/o DMTet

Ours (NeRF)

Ours (NeRF)
w/o DMTet

Ours (NeRF)

Ours (NeRF)
w/o DMTet

Ours (NeRF)

Figure S5. The visual geometric comparison results about with
and without DMTet refinement stage in Ours (NeRF).

AdamW optimizer with learning rates of 1e-3. The batch
size is set to 8, and the entire geometry optimization process
takes about 40 minutes.

More Details for Ours (NeRF) The geometry optimiza-
tion in Ours (NeRF) also consists of two stages. In the
coarse shape optimization stage, we adopt the rendered nor-
mal and depth maps as latent space input of SD 2.1 and the
Normal-Depth diffusion model without VAE encoding to
quickly optimize to obtain the coarse shape. In the fine de-
tail refinement stage, we adopt encoding features obtained
from VAE as latent space input of SD 2.1 to get a detailed
shape.

Ours (NeRF) is optimized on a single Nvidia A100-80G
GPU for 5000 iterations (1500 iterations for the coarse stage
and 3500 iterations for the fine stage), where we use the
AdamW optimizer with learning rates of 1e-3 except for
the hash encoding module using 1e-2. For the time sam-
pling schedule, we adopt a uniform sampling strategy of
annealing from [0.5, 0.98] to [0.05, 0.5] at the 3000th iter-
ation. We set λSD to 1.0 and λND annealing 10 to 2 at the
3500th iteration. The classifier-guided scale is set to 50 in
both SD 2.1 and the Normal-Depth diffusion model. We uti-
lize a multi-resolution strategy to train NeRF efficiently, the
rendering resolution increases from 64 × 64 to 256 × 256
at the 3000th iteration, and the batch size decreases from 8
to 4. The entire geometry optimization takes about 40 min-
utes.

To reduce geometric artifacts when converting NeRF to
DMTet representations, we optimize the DMTet with an ad-
ditional 3000 iterations to refine the geometry. This is done
using the same strategy adopted in the fine detail stage, ex-
cept the rendering resolution is increased to 512. The re-
finement optimization takes about 20 minutes.

As illustrated in Figure S5, the optimized geometry of
NeRF using our Normal-Depth diffusion model is already
of very high quality, clearly demonstrating the effectiveness
of our Normal-Depth diffusion model in optimizing both
the DMTet and NeRF representations. After undergoing
DMTet conversion and subsequent refinement, the surface
details are further enhanced. However, for geometry types
that are more suitably represented by a density volume (e.g.,
hair and smoke), the geometry shape tends to be better with-
out the DMTet conversion.

Camera Sampling During the training process, we ran-
domly sample the elevation angle between 5 degrees and 30
degrees and uniformly sample the camera distance between
1.5 and 1.9. In addition, for the sampling of azimuth an-
gles, we follow the sampling approach from MVDream [8],
where we consecutively sample four orthogonal viewpoints.

4. More Details for Appearance Modeling

The classifier guidance scale is set to 10 for the depth con-
dition Albedo-Diffusion model, while its value is 100 for
the original SD 2.1. We harness the same camera sampling
strategy in geometry appearance modeling. In terms of the
time sampling schedule, we adopt a uniform sampling strat-
egy from [0.02, 0.98].

Our appearance model is optimized on a single Nvidia
A100-80G GPU for 3000 iterations. The batch size is set to
8, and the AdamW optimizer with learning rates of 1e-2 is
utilized to update the model parameters.

[Multiple-choice question]

Figure S6. Example of the interactive interface for the user study.

5. More Details for the User Study
In the user study compared with the baseline, our main
focus is to evaluate the quality of the generated geometry
and the textured models. Regarding geometry, we primar-
ily compare whether the geometry is complete, if the fine
details appear natural, and whether there are significant ar-
tifacts. For textured models, our comparison is based on the
naturalness of the generated textures and the alignment be-
tween the textured model and the textual descriptions. At
the beginning of each questionnaire, we will provide an
illustrative example to explain what is meant by “visual-
textual matching” and how to evaluate the quality of the
generated geometry.

The interface of our user study is shown in Fig. S6, where
we display the results of different methods in each row and
randomly shuffle the order of the methods to avoid intro-
ducing bias. For each row, we display four images, which
consist of color and normal maps captured from two camera
views that are 180 degrees apart.

We distribute our questionnaire to graduate students and
professionals working in the field of 3D, such as model de-
signers and engineers from technology companies. All the
prompts used in our user study are presented in the attached
txt file.

6. Ablation Study about Joint Distribution of
Normal and Depth

The significance of training the joint distribution of Normal-
Depth Diffusion model is substantiated by three additional

SweetDreamer
(NeRF-Based)

32%

Ours (NeRF)
68%

SweetDreamer
(DMTet-based)

36%

Ours (Sphere)
64%

Ours (NeRF) vs. NeRF-Based Ours (Sphere) vs. DMTet-Based

Figure S7. The user study for the comparison with SweetDreamer.

Figure S8. Comparison between SweetDreamer (NeRF-based)
and Ours (NeRF). In each row, from left to right show the ren-
dered image and normal map of the SweetDreamer, followed by
the rendered image and normal map of our method.

experiments, namely, Depth-only , Normal-Only and inde-
pendent Normal-Depth (Normal+Depth). Normal-only and
Depth-only mean that we optimize the 3D model separately
based on two independent diffusion models for Normal and
Depth, respectively. On the other hand, Normal+Depth im-
plies that SDS loss is accumulated from both independent
Normal and Depth diffusion models.

Concretely, we train two independent diffusion models
for normal and depth as the same setting of our Normal-
Depth diffusion model. Figure S10 (a) showcases the text-
to-3D results from various diffusion models, where the SDS
loss computed from SD is excluded to isolate the impact of
the diffusion models. Our observations reveal that while
depth diffusion excels at shaping structure, it tends to intro-
duce noise. In contrast, normal diffusion improves surface
smoothness but falls short in structuring capability. The last

Figure S9. Comparison between SweetDreamer (DMTet-based)
and Ours (Sphere). In each row, from left to right show the ren-
dered image and normal map of the SweetDreamer, followed by
the rendered image and normal map of our method.

two columns compare the results of the independent mod-
els and the joint diffusion model, underscoring the latter’s
superior accuracy in geometry generation.

7. Consistency of Normal and Depth
While the initial output of Normal-Bae and Midas exhibits
some inconsistency, we observed significant mitigation of
this issue after training. To evaluate consistency, we sample
500 captions and images from MSCOCO valuation set (im-
ages as the input for prior models, captions for diffusion
model). We convert the normal to depth and compute the
scale-invariant L1 loss with the generated depth. The re-
sults for monocular prior models, Normal-Depth diffusion,
and MV-Normal-Depth are 0.0980, 0.0795, 0.0487, respec-
tively, demonstrating the training largely enhances the con-
sistency of outputs (see Fig. S10 (b) for visual examples).

8. Failure Case and Limitations
Though our method demonstrates the success of generation
for many diverse scenarios, it will also sometimes fail espe-
cially when the scene is very complex, as shown in Fig. S11.
Moreover, for appearance modeling, we currently only con-
sider the constraints for the albedo components. We leave

Figure S10. Effects of learning the normal and depth distribution.

Figure S11. Failure cases.

exploring solutions for these two problems as our future
work.

9. More Results

9.1. Comparison with SweetDreamer

In comparison to SweetDreamer [3], a concurrent work that
does not have publicly available code, we selected 40 text
prompts from their project page or paper (20 prompts from
their NeRF-based approach and 20 from their DMTet-based
approach). Since the DMTet-based method from Sweet-
Dreamer visualizes the shape with the shading normal in-
stead of the geometry normal, it is not feasible to directly
compare the geometry quality. Therefore, we focus solely
on evaluating the overall quality of the textured models.

Figure S7 illustrates the results of the user study com-
paring our method with SweetDreamer. In our user study,
a significant majority of participants expressed a preference
for our method. Specifically, when compared with Sweet-
Dreamer’s NeRF-based approach, 68% of users selected
Ours (NeRF) as their preferred choice. When compared
with SweetDreamer’s DMTet-based approach, 64% of users
chose Ours (Sphere) as their preferred option. This outcome
demonstrates that our method outperforms SweetDreamder
in 3D generation.

Figure S8 and Figure S9 present the comparisons with
SweetDreamer (NeRF-based) and SweetDreamer (DMTet-
based), respectively. We can observe that our method gen-
erates better geometry compared to SweetDreamer.

9.2. Comparison with Fantasia3D

we have conducted a comprehensive comparison with Fan-
tasia3D, involving 47 examples in the user study. Fig-
ure S13 shows additional comparisons with official Fanta-
sia3D. Besides, Fantasia3D requires case-by-case initializa-
tion to achieve good results (e.g., an oriented ellipsoid or a
coarse shape), while our method just starts from a sphere.

(b) Robotic Steampunk Beetle, mechanical marvel, gears and
antennae, clockwork insect, 3D model

(a) A group of dogs playing poker, 3d asset

Ours (NeRF) Ours (Sphere)

Figure S12. Comparison between Our (NeRF) and Our (Sphere).

Figure S13. More comparison results with Fantasia3D.

9.3. Discussion for Ours (Sphere) and Ours (NeRF)

To better understand the behavior of our method, we discuss
differences between the Ours (Sphere) and Ours (NeRF).
In our experiments, we found that DMTet initialized from
NeRF and from a sphere has advantages for different cases.

In terms of NeRF initialization, it is easier to generate
scenes with multiple objects, e.g., “a group of dogs playing
poker”. Figure S12 (a) demonstrate the comparison results
between Ours (NeRF) and Ours (Sphere) in this case. How-
ever, compared to optimization from a sphere, the geometry
from NeRF initialization tends to be smoother, making it
difficult to generate surfaces with highly detailed structures,
as shown in Figure S12 (b).

In the future, we aim to devise a novel hybrid represen-
tation that combines both initialization methods. This ap-
proach will allow us to leverage the strengths of each ini-
tialization and potentially yield improved results.

9.4. More Visual Results

We present more visual results for Ours (Sphere) in Fig-
ures S14- S17 and Ours (NeRF) in Figures S18-S21.

A crocheted doll wearing a crown, 4K, HD.

Bulldozer made out of toy bricks

A chihuahua wearing a tutu

A charming scene of a crocodile chef cooking in a gourmet kitchen. The crocodile is wearing a chef’s hat and apron, skillfully
preparing exotic dishes with a variety of colorful ingredients spread around, 4K, HD.

A 3d model of an adorable cottage with a thatched roof

A crocodile playing a drum set

A DSLR photo of edible typewriter made out of vegetables

A drying rack covered in clothes

A fox playing the cello

A wide angle DSLR photo of a squirrel in samurai armor wielding a katana

Figure S14. Visual results of Ours (Sphere) (Part I).

A shiny silver robot cat

A wizard raccoon casting a spell

A statue of angel, 3d asset

A sleek, sand-colored dragon that blends into the desert landscape.

A DSLR photo of an origami motorcycle

A breathtaking city floating in the sky, with cascading waterfalls, hovering gardens, and buildings, 8K, blender 3d.

A raccoon stealing a pie

The Joker from Gotham City wearing a dirty hat, with a sinister expression on his face, captured in stunning photorealistic
detail, 4K, HD.

A DSLR photo of a turtle standing on its hind legs, wearing a top hat

The Statue of Liberty, aerial view

Figure S15. Visual results of Ours (Sphere) (Part II).

Cybernetic Raven, metallic feathers, eyes glowing with knowledge, messenger of the future

Majestic Peacock Throne, golden opulence, feathers adorned with jewels, royal symbolism, 3D asset

A tiger wearing sunglasses and a leather jacket, riding a motorcycle

Robotic Steampunk Beetle, mechanical marvel, gears and antennae, clockwork insect, 3D model

Army Jacket, 3D scan

Ninja Assassin, stealthy operative, high-tech weaponry

Panda samurai, anthropomorphic panda in samurai armour, soldier, game asset

Goku standing on a cloud, Dragon Ball.

Fire-breathing Phoenix, mythical bird, engulfed in flames, rebirth and renewal, 3d asset

A whimsical illustration of a crocodile dressed as an astronaut, 4D, blender.

Figure S16. Visual results of Ours (Sphere) (Part III).

A ceramic lion

A DSLR photo of a cake covered in colorful frosting with a slice being taken out, high resolution

A DSLR photo of a squirrel-lizard hybrid

A DSLR photo of a tarantula, highly detailed

A DSLR photo of a toilet made out of gold

A DSLR photo of a train engine made out of clay

A DSLR photo of an ornate silver gravy boat sitting on a patterned tablecloth

A DSLR photo of a very cool and trendy pair of sneakers, studio lighting

A DSLR photo of an astronaut standing on the surface of mars

A DSLR photo of an old car overgrown by vines and weeds

Figure S17. Visual results of Ours (Sphere) (Part I).

A corgi wearing a top hat

A confused beagle sitting at a desk working on homework

A Christmas tree with donuts as decorations

A delicious hamburger

A covered wagon

A freshly baked loaf of sourdough bread on a cutting board

A ghost eating a hamburger

A group of squirrels rowing crew

A gummy bear driving a convertible

A fox holding a videogame controller

Figure S18. Visual results of Ours (NeRF) (Part I).

A hippo made out of chocolate

A human skeleton relaxing in a lounge chair

A humanoid robot sitting on a chair drinking a cup of coffee

A humanoid robot using a laptop

A nest with a few white eggs and one golden_egg

A panda rowing a boat in a pond

A panda wearing a chef‘s hat and kneading bread dough on a countertop

Interstellar Fortress, space citadel, advanced technology, defensive weaponry, highly detailed, 3D_model

Enchanted Elven Citadel, ethereal fortress, magical spires, elven stronghold, 3D asset

A humanoid robot playing solitaire

Figure S19. Visual results of Ours (NeRF) (Part II).

A pig playing the saxophone

A pile of dice on a green tabletop

A recliner chair

A red rotary telephone

A robot couple fine dining

A silverback gorilla holding a golden trophy

A small cherry tomato plant in a pot with a few red tomatoes growing on it

A squirrel dressed like Henry VIII king of England

Army Jacket, 3D scan

Picture of the Leaning Tower of Pisa, featuring its tilted structure and marble facade
Figure S20. Visual results of Ours (NeRF) (Part III).

A steaming basket full of dumplings

A tiger waiter at a fancy restaurant

A wide angle DSLR photo of a colorful rooster

An amigurumi bulldozer

An intricate complex with steampowered machinery, twisting pipes, and brick warehouses, shrouded in a foggy,
industrial atmosphere, 8K, blender 3d.

An monster that looks like a rhinoceros, cute, boss, game, character, highly detailed, photorealistic, 4K, HD

An old vintage car

An origami hippo in a river

An exercise bike

A wide angle zoomed out DSLR photo of a skiing penguin wearing a puffy jacket

Figure S21. Visual results of Ours (NeRF) (Part IV).

References
[1] Gwangbin Bae, Ignas Budvytis, and Roberto Cipolla. Esti-

mating and exploiting the aleatoric uncertainty in surface nor-
mal estimation. In ICCV, 2021. 1

[2] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana Ehsani,
Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe
of annotated 3d objects. In CVPR, 2023. 2

[3] Weiyu Li, Rui Chen, Xuelin Chen, and Ping Tan. Sweet-
dreamer: Aligning geometric priors in 2d diffusion for con-
sistent text-to-3d. arXiv preprint arXiv:2310.02596, 2023. 7

[4] Songyou Peng, Björn Häfner, Yvain Quéau, and Daniel Cre-
mers. Depth super-resolution meets uncalibrated photometric
stereo. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2017. 3

[5] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. TPAMI, 2020. 1

[6] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 1, 2

[7] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes,
Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al.
Laion-5b: An open large-scale dataset for training next gener-
ation image-text models. NeurIPS, 2022. 1

[8] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li,
and Xiao Yang. Mvdream: Multi-view diffusion for 3d gener-
ation. arXiv preprint arXiv:2308.16512, 2023. 2, 5

[9] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. arXiv preprint arXiv:2010.02502,
2020. 2

