
A Conditional Denoising Diffusion Probabilistic Model for Point Cloud
Upsampling Supplementary Materials

1. Additional Ablation Study

We provide additional ablation studies to deepen the
analysis and understanding for our method.

Rate label form. Our method achieves high-quality
arbitrary-rate sampling during inference by parameterizing
a rate factor. Therefore, we explore the impact of different
rate label forms for the model performance. We provide ad-
ditional information regarding the scale of points, such as
the number of points. As shown in Tab 1, the performance
difference for the model is relatively small (the variation
< 0.02 for CD). This reason is that the rate label is solely
modeled to identify the scale difference between the sparse
point cloud and the dense point cloud, thus it can not signif-
icantly improve the performance of the model.

Rate Label Forms CD↓ HD↓ P2F↓
[256,1024,3] 0.143 1.258 1.907
[256,1024] 0.145 1.352 1.913

[0.256,1.024] 0.141 1.289 1.954
[3,] 0.131 1.220 1.912

Table 1. The ablation study of the rate label form at 4× on PU-
GAN [6]. Our method performs optimally, when r = [3,] (we set
r = [0,] to represent 1×).

Sampling intervals. Our method is formally based on
conditional DDPM, thus inevitably lagging behind exist-
ing non-DDPM-based point cloud upsampling methods in
terms of sampling speed. Therefore, we conduct the ab-
lation study between the quality and time of generating
point clouds under different sampling intervals. This only
changes the sampling interval during inference, without re-
training the model.

Tab 2 shows the trade-off between the performance and
the generating time of our method under different sampling
intervals. Surprisingly, although the overall performance of
the model decreases with increasing sampling intervals, this
does not follow a linear trend, presenting an irregular state.
We believe that the performance variation of the model is
not only related to the sampling interval but also to the dis-
tance from x1 to x0. When the distance of time step be-
tween x1 and x0 is smaller, the model performs better, such
as the sampling interval = 12 (with a distance of 3 time

steps between x1 and x0). In other words, when given some
close time intervals, we should choose the sampling interval
that brings x1 closest to x0, rather than the one that evenly
divides the total time steps.

Intervals Distance CD↓ HD↓ P2F↓ Times(s)↓
50 49 0.320 2.738 3.145 0.410
40 39 0.303 2.608 3.124 0.473
30 9 0.221 2.234 2.054 0.584
20 19 0.248 2.380 2.064 0.784
12 3 0.202 1.976 1.984 1.302
10 9 0.210 2.001 2.087 1.392
1 1 0.131 1.220 1.934 14.773

Table 2. Ablation study of different sampling interval at 4× on
PUGAN [6]. “Distance” means the distance of time steps between
x1 and x0. When the sampling interval = 12, the performance and
sampling speed of our methods keep a favorable balance. Mean-
while, we showcase the visual results for the sampling interval
= 12 and = 30 in Fig 5.

2. Additional Comparative Experiments

Sampling speed. We conduct the evaluation of sampling
speed. We believe speed comparisons are more intuitive
compared to Params and FLOPs, as most methods adopt
an iterative approach to achieve point cloud upsampling (all
experiments were conducted using an NVIDIA 3090 GPU).
To constrain under DDPM formulation and accelerate infer-
ence, we adopted interval sampling acceleration (Sec 1). Si-
multaneously, we also provide the results using DDIM [13]
in Tab 3 (without retraining). We found that incorporating
the interval sampling trick (Sec 1) into DDIM yields sig-
nificant results (large interval sampling in the first half and
normal inference in the second half). In the second half of
inference, interpolation points as guiding information can
frequently and meticulously guide the noise generation di-
rection (Eq 2 and Eq 9 in the main text), reducing the impact
of rough inference in the first half, maintaining high-quality
generation.

Other Noise. We conduct additional other noise exper-
iments, to reveal the issue of the non-robustness of DDPM
to non-modeled distributions. Despite the Tab 6 in main
text showing the SOTA performance for PUDM on uni-
form noise, this is solely due to the high-performance base-
line. Simultaneously, we provide results for approximating

1

Figure 1. The network detail of PUDM. The encoder of the N-Net and the C-Net consists of set abstraction (SA) layers and self-attention
layers. Simultaneously, the decoder consists of feature propagation (FP) layers and self-attention layers. The transfer module used for
interaction between the N-Net and the C-Net consists of two cross-attention modules. Compared to the C-Net, the N-Net requires additional
information for modeling the diffusion step: the global features, the R embedding, and the T embedding.

Methods CD↓ HD↓ P2F↓ Params↓ FLOPs↓ Time↓
PU-Net [15] 0.529 6.805 4.460 0.814M 4.982G 0.446s
MPU [14] 0.292 6.672 2.822 0.076M 2.897G 0.487s
PU-GAN [12] 0.282 5.577 2.016 0.684M 0.974G 0.618s
Dis-PU [7] 0.274 3.696 1.943 0.105M 3.276G 0.724s
PU-EVA [8] 0.277 3.971 2.524 0.287M 10.377G 0.587s
PU-GCN [12] 0.268 3.201 2.489 0.076M 0.410G 0.531s
NePS [2] 0.259 3.648 1.935 0.664M 9.135G 0.479s
Grad-PU [4] 0.245 2.369 1.893 0.067M 9.135G 0.479s
Ours-30 0.132 1.311 1.998 16.034M 16.457G 0.507s
Ours-20 0.133 1.317 2.016 16.034M 16.457G 0.390s
Ours-10 0.145 1.349 2.102 16.034M 16.457G 0.266s
Ours-6 0.283 1.979 2.556 16.034M 16.457G 0.219s
Ours-1000 0.131 1.220 1.912 16.034M 16.457G 14.773s

Table 3. The results of 4× on PUGAN. ”Ours-X” indicates infer-
ring X steps using DDIM. ”FLOPs” means the computational cost
for one inference step. PUDM meets the speed requirements.

Noise Laplace (τ = 0.05) Poisson (τ = 0.05)
Methods CD↓ HD↓ P2F↓ CD↓ HD↓ P2F↓
NePS [2] 1.045 9.114 17.845 1.698 14.01 25.484
Grad-PU [4] 0.964 8.364 16.915 1.637 13.784 25.157
Ours 0.810 7.501 15.345 1.644 8.014 24.145

Table 4. The results of the Laplace noise and the Poisson noise at
4× on PUGAN.

Gaussian distribution noise (Laplace noise, µ = 0, b = 1)
and far from Gaussian distribution noise (Poisson noise,
λ = 3) in Tab 4. This further validated the conclusion
for Sec 5.3 in the main text. We believe that finding a

distribution or a training strategy to ensure the robustness
of DDPM across multiple or even all noise distributions is
highly meaningful for the applications of DDPM.

Point Cloud Part Segmentation. We evaluate the qual-
ity of point cloud upsampling on point cloud part segmen-
tation. Tab 5 displays extremely poor results for all point
cloud upsampling methods (class accuracy < 40%).

Existing point cloud upsampling methods (including our
methods) are not proficient in semantic-related downstream
tasks for the evaluation metrics such as point cloud segmen-
tation and point cloud detection. This is because the seman-
tic order of points is disrupted during the point cloud up-
sampling process, making each point struggle to align with
the semantic label. However, this does not mean that point
cloud upsampling cannot be applied to semantic-related
downstream tasks entirely, since precise semantic labels are
not required in practical applications.

In fact, because the semantic label is uniquely mapped to
each point in point clouds, their distributions are inherently
similar. Therefore, the model may be able to maintain the
semantic order of points during upsampling point clouds.

2

Datasets PointNet [10] (%) PointNet++ [11] (%)
Methods IA↑ CA↑ Im↑ Cm↑ IA↑ CA↑ Im↑ Cm↑
Low-res 92.16 81.12 77.13 81.11 92.97 84.99 81.10 83.13
High-res 93.47 83.05 79.01 83.99 94.34 86.27 82.91 85.61
PU-Net [15] 51.92 36.05 32.69 35.79 52.04 36.25 32.66 35.90
MPU [14] 52.01 36.16 32.76 35.89 52.14 36.28 32.71 36.04
PU-GAN [12] 52.01 35.94 32.78 35.90 52.25 36.08 32.73 36.10
Dis-PU [7] 52.38 36.02 32.79 35.96 52.71 36.16 32.78 36.16
PU-EVA [8] 51.80 35.94 32.69 35.82 52.04 36.13 32.65 35.94
PU-GCN [12] 51.67 35.87 32.58 35.58 51.89 36.03 32.65 35.79
NePS [2] 51.71 35.91 32.63 35.61 52.01 36.11 32.67 35.87
Grad-PU [4] 52.22 36.02 32.75 36.07 52.46 35.29 32.97 36.31
Ours 51.88 36.08 32.67 36.00 52.11 36.48 32.99 36.34

Table 5. The results of point cloud part segmentation on ShapeNet
[1]. ”Low-res” refers to the point cloud subsampled with 512
points, while ”High-res” denotes the original test point cloud with
2048 points. Meanwhile, ”IA” stands for instance accuracy, and
”CA” denotes class accuracy. ”Im” means instance mIoU, and
”Cm” denotes class mIoU. All methods yield very poor results, as
existing point cloud upsampling methods struggle to maintain the
semantic order of points.

3. Implementation

The network detail of PUDM is shown in Fig 1. We
employ the same training configuration for PUGAN and
PU1K. Specifically, we configure batch size = 28, and
conduct 1000 epochs using an NVIDIA 3090 GPU, tak-
ing approximately 5 days for PUGAN. For the C-Net and
the N-Net, the sampling points/the channel dimensions are
(1024, 256, 64, 16)/(64, 128, 256, 512) and (1024, 256, 64,
16)/(128, 256, 256, 512), respectively. Meanwhile, in the
TM, we set the number = 4 of head to improve the model-
ing capacity of our model, and the latent dimension = 64.
In addition, the global features with a dimension of 1024
are extracted from the interpolated point cloud i through a
two-stage PointNet [10]. The parameters of the R embed-
ding layer are (256, 128), indicating that our method can
upsample a point cloud to a maximum of 256 times. The
time step t is embedded dimension = 512 via MLPs [5].

Encoder. In the Encoder, the SA first uses itera-
tive farthest point sampling (FPS) to subsample the in-
put points ple ∈ RN l×3 and the feature f l

e ∈ RN l×Cl
e

into ple ∈ RN l+1×3 and f l
e ∈ RN l+1×Cl

e at level l + 1
(N l > N l+1). Subsequently, we locate K nearest neigh-
bors in ple, and aggregate the feature f l

e and neighbors
into gin ∈ RN l+1×Cl

e×K . Next, we further extract the
neighborhood features by transforming gin into gout ∈
RN l+1×Cl+1

e ×K through MLPs. Simultaneously, to pre-
serve more details, we use the residual connection to aggre-
gate MLP (gin) and gout. Finally, unlike PointNet++ [11]
using the max-pooling layer to filter features, we consider
using the self-attention layer to retain more fine-grained in-
formation [9, 16], f l+1

e ∈ RN l+1×Cl+1
e .

Decoder. In the Decoder, the FP is similar to the SA,
while the FP transforms the input feature f l

d ∈ RN l×Cl
d

into f l
d ∈ RN l+1×Cl

d×K through upsampling (Nl < Nl+1).

Subsequently, we feed f l
d into a self-attention layer to obtain

f l
d ∈ RN l+1×Cl

d . Simultaneously, to propagate features, we
aggregate f l

d with the points pld and the features f l
e from the

SA at the same level. Finally, we transform f l
d into f l+1

d ∈
RN l+1×Cl+1

d through MLPs.

4. Formula Derivation of DDPM for PCU
In this section, we provide the theoretical foundation for

the application of DDPM in PCU. Due to the page limi-
tations, our derivation process focuses more on the overall
logic, overlooking some details.

The forward process. The forward process q is modeled
as a Markov chain, while the each step follows an indepen-
dent Gaussian distribution. This gradually adds noise to x
until x degrades to z. The process is irrelevant of the con-
dition c (i.e. the sparse point cloud). Formally, given a time
step t ∼ U(T) and the dense point cloud x0 ∼ Pdata, we
can compute the forward process by the conditional distri-
bution q(x1:T |x0):

q(x1:T |x0) =
q(x0:T)

q(x0)

=
q(xT |x0:T−1)q(x0:T−1)

q(x0)

Markov Property :

=
q(xT |xT−1)q(xT−1|x0:T−2)q(x0:T−2)

q(x0)

=
q(xT |xT−1)q(xT−1|xT−2)...q(x1|x0)���q(x0)

�
��q(x0)

=

T∏
t=1

q(xt|xt−1)

(1)

where q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). βt is a pre-

defined and increasing variance term (βt ∈ [0.0001, 0.02]
in this paper).

Meanwhile, to enable the sampling-differentiable train-
ing, we utilize the reparameterization trick[5] : xt = µ +
σϵt, ϵt ∼ N (ϵt; 0, I). Next, we can obtain a more simpli-
fied formulation of computing xt by setting αt = 1 − βt,
and αt =

∏T
t=1 αt:

xt =
√

1− βtxt−1 +
√
βtϵt

=
√
αtxt−1 +

√
1− αtϵt

=
√
αt(

√
αt−1xt−2 +

√
1− αt−1ϵt−1) +

√
1− αtϵt

=
√
αtαt−1xt−2 +

√
αt − αtαt−1ϵt−1 +

√
1− αtϵt

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ

...

3

······ ······

RR R R R

Figure 2. Visualization of the forward process and the reverse process of PUDM. For the forward process, the dense point cloud x0 is
gradually added noise according to q(xt|xt−1), until x0 degrades to xT . Simultaneously, for the reverse process, xT is slowly removed
noise according to pθ(xt−1|xt, C), until xT recovers to x0. We consider adding the conditions at each time step in the reverse process, the
sparse point cloud c and the rate prompt R, to control the generation of the dense point cloud.

=
√
αtx0 +

√
1− αtϵ

(2)

where ϵ represents the combination of multiple Gaussian
noise terms.

Therefore, xt is only related to the dense point cloud x0

and the time step t in the forward process.
The reverse process. Similarly, the reverse process p is

also modeled as a Markov chain, while the each step is as-
sumed to follow an independent Gaussian distribution. This
slowly removes noise from z until z recovers to x. Formally,
given a set of conditions C = {ci|i = 1..S} (”S” means the
number of conditions), we can compute the reverse process
by the joint distribution pθ(x0:T , C):

pθ(x0:T , C) = pθ(x0|x1:T , C)pθ(x1:T , C)

Markov Property :

= pθ(x0|x1, C)pθ(x1|x2:T , C)pθ(x2:T , C)

= pθ(x0|x1, C)...pθ(xT |xT−1, C)p(xT , C)

= p(xT , C)

T∏
t=1

pθ(xt−1|xt, C)

xT ∼ N (xT ; 0, I)

= p(xT)

T∏
t=1

pθ(xt−1|xt, C)

(3)

When C = ∅, Eq 3 transforms into the reverse process
of standard DDPM (i.e. unconditional DDPM).

Then, as DDPM is modeled to be reversible, we can di-
rectly compute the posterior distribution q(xt−1|xt, x0) in
the forward process:

q(xt|xt−1, x0) =
q(xt−1|xt, x0)q(xt, x0)

q(xt−1, x0)

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)

Markov Property :

=
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
(4)

where q(xt|xt−1) = N (xt;
√
αtxt−1, (1 − αt)I),

q(xt−1|x0) = N (xt−1;
√
αt−1x0, (1 − αt−1)I), and

q(xt|x0) = N (xt;
√
αtx0, (1 − αt)I). In fact, each time

step in the reverse process aims to gradually fit the poste-
rior distribution under corresponding time step in the for-
ward process (the posterior distribution represents the in-
verse process of the forward process, not the reverse pro-
cess of DDPM), i.e. pθ(xt−1|xt, C) ≈ q(xt−1|xt, x0).
Therefore, deriving pθ(xt−1|xt, C) is equated to deriving
q(xt−1|xt, x0).

Subsequently, by substituting q(xt|xt−1), q(xt−1|x0)
and q(xt|x0) into Eq 4, we obtain the mean µ̃t and the vari-
ance σ̃t of q(xt|xt−1):

4

µ̃t =

√
αt(1− αt−1)

1− αt
xt +

√
αt−1(1− αt)

1− αt
x0

σ̃t =
1− αt−1

1− αt
(1− αt)

(5)

We can clearly realize that σ̃t is a constant.
Next, we substitute x0 = xt−

√
1−αtϵ√
αt

into µ̃t to the new
expression of the mean µ̃t:

µ̃t =
1

√
αt

(xt −
1− αt√
1− αt

ϵ) (6)

Therefore, for the posterior distribution q(xt−1|xt, x0),
we can compute xt−1 solely by providing xt and ϵ (where
x0 must be considered as prior knowledge in forward pro-
cess).

Although according to Eq 5 and Eq 6, the posterior distri-
bution q(xt−1|xt, x0) is known, we can not directly utilize
it to deriving x0 due to involving q(xt|x0), which requires
obtaining xt and ϵ from the forward process.

Typically, the network f(xt, t) fits ϵ during the training
process of DDPM, as xt is known in the reverse process
(xt ∼ N (xt; 0, I)). Simultaneously, to introduce the condi-
tion set C during in the reverse process (Fig 2), the network
increases additionally inputs, i.e. f(xt, t, C). In PUDM, the
condition set C = {c, r} represent the sparse point cloud
and the rate prompt between the sparse point cloud and the
dense point cloud.

Training objective under specific conditions. The
training objective of DDPM under specific conditions is
to maximize a Evidence Lower BOund (ELBO), due to
directly optimize the log-likelihood log pθ(x0, C) is in-
tractable.

We directly convert the log-likelihood log pθ(x0, C) into
a loss form − log pθ(x0, C). We first add a KL divergence
item Dkl[q(x1:T |x0)||pθ(x1:T |x0, C)] to − log pθ(x0, C):

− log pθ(x0, C)

≤ − log pθ(x0, C) +Dkl[q(x1:T |x0)||(pθ(x1:T |x0, C))]

≤ − log pθ(x0, C)+∫
q(x1:T |x0) log

q(x1:T |x0)

pθ(x1:T |x0, C)
dx1:T

≤ − log pθ(x0, C)+∫
q(x1:T |x0) log

q(x1:T |x0)
pθ(x1:T ,x0,C)

pθ(x0,C)

dx1:T

≤ − log pθ(x0, C)+∫
q(x1:T |x0)(log

q(x1:T |x0)

pθ(x0:T , C)
+ log pθ(x0, C))dx1:T

≤ − log pθ(x0, C)+

Eq(x1:T |x0
) log

q(x1:T |x0)

pθ(x0:T , C)
+ log pθ(x0, C)

≤ Eq(x1:T |x0
) log

q(x1:T |x0)

pθ(x0:T , C)

Adding Eq(x0) to the both sides :

−Eq(x0) log pθ(x0, C) ≤ Eq(x0:T) log
q(x1:T |x0)

pθ(x1:T , C)
(7)

Then, leveraging the Markov property and Bayes’ theo-
rem, we can obtain the loss form LELBO of the ELBO:

LELBO = Eq
q(x1:T |x0)

pθ(x1:T , C)

= Eq[DKL(q(xT |x0)||p(xT))︸ ︷︷ ︸
1

+
∑

t=2∈T

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt, C))︸ ︷︷ ︸
2

− log pθ(x0|x1, C)︸ ︷︷ ︸
3

]

(8)

Subsequently, we can eliminate the constant term 1 ,
and combine 2 and 3 (where 2 = 3 , when t = 1)
to obtain a more simplified expression:

LELBO =∑
t=1∈T

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt, C))

(9)

In order to approximate pθ(xt−1|xt, C) to
q(xt−1|xt, x0), we represent the mean µθ(xt, t, C)
through a neural network with parameter θ. Meanwhile,
we can further expand LELBO to obtain a more simplified
form:

q(xt−1|xt, x0) = N (xt−1;
1

√
αt

(xt −
1− αt√
1− αt

ϵ), σ̃tI)

pθ(xt−1|xt, C) = N (xt−1;µθ(xt, t, C), σ̃tI)

where σ̃t =
1− αt−1

1− αt
(1− αt)

LELBO

= Eq(x0:T)(
1

2σ̃2
t

||µ̃t − µθ(xt, t, C)||2)

5

= Eq(x0:T),ϵ(
1

2σ̃2
t

||(1
√
αt

(xt −
1− αt√
1− αt

ϵ)−

µθ(xt, t, C)||2)

= Eq(x0:T),ϵ(
(1− αt)

2

2σ̃2
tαt(1− αt)

||(1
√
αt

(xt −
1− αt√
1− αt

ϵ))−

(
1

√
αt

(xt −
1− αt√
1− αt

ϵθ(xt, t, C)))||2)

= Eq(x0:T),ϵ||ϵ− ϵθ(xt, t, C)||2

(10)

Next, given t ∼ U(T) and ϵ ∼ N (0, I), we can obtain
the training objective L(θ) for DDPM under specified con-
ditions:

L(θ) =

Et∼U(T),ϵ∼N (0,I)||ϵ− ϵθ(
√
1− αtϵ+

√
αtx0, t, C)||2

(11)

Similar to the reverse process, when C = ∅, L(θ) means
the training objective of the standard DDPM.

We provide a general derivation process concerning both
conditional and unconditional DDPM. Therefore, this is not
only applicable to PUDM but also to other tasks employing
DDPM.

5. More Visualization
We display additional visual results of upsampled point

clouds in Fig 3, Fig 4 and Fig 5.

References
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 3

[2] Wanquan Feng, Jin Li, Hongrui Cai, Xiaonan Luo, and Juy-
ong Zhang. Neural points: Point cloud representation with
neural fields for arbitrary upsampling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18633–18642, 2022. 2, 3

[3] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. pages
1231–1237. Sage Publications Sage UK: London, England,
2013. 8, 9

[4] Yun He, Danhang Tang, Yinda Zhang, Xiangyang Xue, and
Yanwei Fu. Grad-pu: Arbitrary-scale point cloud upsam-
pling via gradient descent with learned distance functions.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5354–5363, 2023. 2,
3

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 3

[6] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-gan: a point cloud upsampling ad-
versarial network. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 7203–7212,
2019. 1, 7

[7] Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu.
Point cloud upsampling via disentangled refinement. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 344–353, 2021. 2, 3

[8] Luqing Luo, Lulu Tang, Wanyi Zhou, Shizheng Wang, and
Zhi-Xin Yang. Pu-eva: An edge-vector based approxima-
tion solution for flexible-scale point cloud upsampling. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 16208–16217, 2021. 2, 3

[9] Liang Pan, Xinyi Chen, Zhongang Cai, Junzhe Zhang, Haiyu
Zhao, Shuai Yi, and Ziwei Liu. Variational relational point
completion network. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
8524–8533, 2021. 3

[10] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 3

[11] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 3

[12] Guocheng Qian, Abdulellah Abualshour, Guohao Li, Ali
Thabet, and Bernard Ghanem. Pu-gcn: Point cloud upsam-
pling using graph convolutional networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11683–11692, 2021. 2, 3

[13] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 1

[14] Wang Yifan, Shihao Wu, Hui Huang, Daniel Cohen-Or, and
Olga Sorkine-Hornung. Patch-based progressive 3d point set
upsampling. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5958–
5967, 2019. 2, 3

[15] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-net: Point cloud upsampling network.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2790–2799, 2018. 2, 3

[16] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 16259–16268, 2021. 3

6

Figure 3. Visualization of point cloud upsampling at 4× on PUGAN [6].

7

Figure 4. Visualization of point cloud upsampling at 4× on KITTI [3].

8

Figure 5. Visualization of point cloud upsampling at 4× on KITTI [3]. ”Ours-12” and ”Ours-30” represent the results of our method at
sampling intervals = 12 and = 30, respectively.

9

	. Additional Ablation Study
	. Additional Comparative Experiments
	. Implementation
	. Formula Derivation of DDPM for PCU
	. More Visualization

