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1. More Related Work
Source-free Domain Adaptation (SFDA). SFDA aims to
adapt a pre-trained source model to a new domain without
needing access to the original source data. Existing methods
in this field generally fall into two categories: source dis-
tribution estimation methods [4, 9, 17, 24] and self-training
methods [5, 16, 19, 23]. The former often utilizes generative
networks to create synthetic-labeled data or to transfer tar-
get data into the style of the source domain, thereby bridg-
ing the domain gap. The latter, drawing inspiration from
semi-supervised learning, typically adopts various pseudo-
labeling techniques for model adaptation. However, these
methods mainly focus on the vanilla closed-set scenarios
where the source and target domains share identical label
spaces, significantly limiting their applicability. In contrast,
this paper focuses on Source-free Universal Domain Adap-
tation (SF-UniDA), targeting the more challenging setting
that encompasses both covariate and label shifts.
Out-of-distribution (OOD) Detection. The primary ob-
jective of OOD detection is to identify test (target) sam-
ples that are distinct from the training (source) distribu-
tion. Typically, in the literature of OOD, the distribution
is referred to as ‘label distribution’, with OOD samples
being those unrecognizable or exclusive to the source la-
bel space. As such, OOD detection can be considered a
component of UniDA/SF-UniDA, both of which aim to re-
ject these target-private unknown data from the target do-
main. In addressing OOD, prevailing techniques [1, 2, 20]
often use metrics such as the maximum of softmax out-
puts or confidence scores. Recent studies [3, 8, 21] have
begun incorporating a collection of OOD samples for out-
lier exposure during model pre-training, fostering a clearer
distinction between in-distribution (ID) and OOD samples.
However, these methods typically depend on manually set
thresholds for identifying target-private data, which can be
both tedious and sub-optimal. In contrast, we start from
the perspective of feature decomposition and utilize the fea-
ture projection onto source-unknown space as the indicator.
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Then, we consider the distance to both target prototypes and
source anchors to establish adaptive instance-level decision
boundaries. Our solution is effective under conditions of
both covariate and label shift, offering a more flexible and
robust approach for UniDA/SF-UniDA.

2. More Details about Methodology

2.1. Target Prototype Construction

In the preceding discussion, we outlined the construction of
instance-level pseudo-labeling decision boundaries. These
boundaries are defined based on the distance of samples
to source anchors, denoted as {csc ∈ RD|c = 1, . . . , C},
and target prototypes, denoted as {ctc ∈ RD|c = 1, . . . , C}.
Source anchors are derived directly from the classifier
weight Wcls, where Wcls ∈ RC×D. Regarding the target
prototypes, we employ a top-K sampling strategy for their
construction. Specifically, for each category c, we identify
the top-K instances in the target domain with the highest
δc(f

t
θ(x

t
i)) scores. These instances are then averaged to

form the target prototype ctc for category c. Formally,
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where δc(f
t
θ(x

t
i)) denotes the c-th soft-max probability for

the instance xt
i. As previously mentioned, f t

θ and gtθ repre-
sent the entire target model and its feature extractor, respec-
tively. A critical challenge is determining the appropriate
value for K. Following previous work [7, 12], we adopt a
straightforward yet effective method, setting K = Nt/Ĉt.
Here, Nt signifies the amount of target data, while Ĉt es-
timates the number of target categories. For the estimation
of Ĉt, we utilize the Silhouette metric[13]. This process
involves initially enumerating possible values for Ct, fol-
lowed by partitioning the target domain into respective clus-
ters using an algorithm such as K-means. Subsequently, the
Silhouette metric aids in selecting the most suitable value



for Ĉt. Formally, the Silhouette score for xt
i is defined as:
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where a(xt
i) and b(xt

i) are functions used to calculate the
distance of a data sample xt

i to its own cluster CI and to
other clusters CJ ,J ̸=I , respectively. The term |CI | denotes
the size of the cluster CI . d(, ) is used to measure the dis-
tance between two data samples. The appropriateness of the
clustering configuration is assessed by the Silhouette val-
ues of the data samples. A majority of high Silhouette val-
ues indicate a suitable clustering configuration. Conversely,
predominantly low Silhouette values suggest that the clus-
tering configuration may have an inappropriate number of
clusters, either too many or too few.

2.2. Feature Consensus Regularization

Existing literature [12, 22, 23] in SFDA and SF-UniDA
have observed that the integration of consensus regulariza-
tion with nearest neighbors in the feature space significantly
contributes to stable performance. Building upon these find-
ings, we incorporate the feature consensus learning objec-
tive Lcon into our proposed LEAD framework. Specifically,
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where Lt
i represents the set of nearest neighbors for a given

target domain data xt
i within the feature space. We uti-

lize the cosine similarity function to identify these nearest
neighbors. Consistent with [12], we empirically determine
the size of the nearest neighbor |Lt

i| = 4.

2.3. Integration into Existing Methods

As elaborated in the main text of our study, the LEAD
framework introduces an innovative approach to SF-UniDA
through feature decomposition. This unique concept es-
tablishes LEAD as a complementary addition to existing
methodologies. To validate this merit, we have integrated
LEAD with representative methods, specifically UMAD [6]
and GLC [12]. Given the unsupervised nature of the SF-
UniDA task, this integration is achieved by combining the
optimization objectives of LEAD with those of the baseline

methods. As a result, the integrated optimization objective
is presented as follows:

Loverall = γ · LLEAD + (1− γ) · Lbaseline (4)

where γ is a trade-off hyper-parameter, generally set to 0.7.

3. More Details about Experiments
3.1. Datasets

In this study, we evaluate the performance and adaptabil-
ity of our proposed LEAD framework using four standard
datasets, each offering distinct challenges. First, Office-
31 [14], a prevalent domain adaptation benchmark, en-
compasses 31 object classes (comprising 4,652 images)
within an office setting, spread across three distinct do-
mains: DSLR (D), Amazon (A), and Webcam (W). Next,
Office-Home [18] presents a more extensive challenge
with 65 object classes totaling 15,500 images, catego-
rized into four domains: Artistic images (Ar), Clip-Art
images (Cl), Product images (Pr), and Real-world images
(Rw). The VisDA [10] dataset, a more challenging bench-
mark, involves 12 object classes; its source domain includes
152,397 synthetic images created from 3D models, and the
target domain comprises 55,388 real-world images from
Microsoft COCO. Lastly, DomainNet [11], the most ex-
tensive DA benchmark, contains approximately 0.6 million
images across 345 object classes. In line with existing re-
search, our experiments on DomainNet focus on three sub-
sets: Painting (P), Real (R), and Sketch (S). Figure 1 illus-
trates some representative examples of these benchmarks.

3.2. Source Model Pre-training

To prepare the source model, we adopt the training
recipe [5, 12, 23] widely used in SFDA and SF-UniDA
tasks. For a given labeled source domain Ds =
{(xs

i ,y
s
i )}

Ns
i=1 where xs

i ∈ X s ⊂ RX ,ys
i ∈ Ys ⊂ RC .

We train the source model fs
θ using a smooth cross-entropy

loss function, which is detailed as follows:
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where δc(f
s
θ (x

s
i )) denotes the c-th soft-max probability for

the instance xs
i . qsi,c corresponds to c-th smooth one-hot

encoded label for ys
i , i.e., qsi,c = (1 − β) · 1(ys

i ) + β/C.
Here, 1 denotes the one-hot encoding operator, and β is the
smoothing parameter which is set to 0.1 for all benchmarks.

3.3. Target Inference Details

In the inference phase, we leverage the strategy employed
in existing methods [7, 12] to distinguish between com-
mon and private data. Specifically, we apply the normalized
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Figure 1. Representative examples from the benchmark datasets used in our study, illustrating various types of domain shift. The selected
samples highlight the distinct characteristics and environments of the domains within each dataset.
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Figure 2. The confusion matrix for Source Model, UMAD, LEAD, and UMAD w/ LEAD on Pr→Ar (Office-Home) PDA task.

Shannon Entropy [15] as the metric for this differentiation.
The implementation details of this strategy are as follows:

I(xt
i) = − 1

logC

C∑
c=1

δc(f
t
θ(x

t
i)) log δc(f

t
θ(x

t
i)) (6)

p(xt
i) =

{
unknown, if I(xt

i) ≥ ω

argmax(f t
θ(x

t
i)), if I(xt

i) < ω
(7)

where the inference result p(xt
i) hinges on the normalized

entropy value I(xt
i). A higher value of I(xt

i) indicates a
greater likelihood of the model f t

θ classifying the data sam-
ple xt

i as unknown. In particular, when I(xt
i) exceeds a

pre-defined threshold ω, the data sample xt
i is categorized as

target-private. Conversely, if I(xt
i) falls below this thresh-

old, the sample is recognized as common. In our experi-
ments across all datasets, we set ω = 0.55, aligning with
the thresholds used in existing methods [7, 12].

3.4. More Experimental Analysis

Confusion Matrix Visualization. Figure 2 provides a vi-
sual representation of the confusion matrices for four dif-
ferent models: the model trained solely on source data,
UMAD, LEAD, and a combined UMAD with LEAD. This

comparison is conducted in the Pr→Ar (Office-Home) PDA
task. The source-only model exhibits a tendency towards
inaccurate predictions due to distributional covariate shifts,
notably misclassifying target common data as belonging to
source private categories. The implementation of model
adaptation, as observed in the matrices, evidently mitigates
this confusion. However, due to that UMAD is designed
primarily for OPDA and OSDA scenarios, its effectiveness
is somewhat constrained. In contrast, our LEAD framework
demonstrates significant versatility and substantial perfor-
mance enhancement. Notably, it also proves to be a com-
plementary approach when integrated with UMAD.

t-SNE Feature Visualization. In Figure 3, we provide a
t-SNE visualization of the features extracted by the source
model, UMAD, LEAD, and UMAD integrated with LEAD.
This analysis is conducted within the Cl→Re (Office-
Home) OPDA task. An obvious finding from this visual-
ization is the initially ambiguous boundaries between tar-
get private and common data in the feature space, where
these data appear intermingled. As expected, performing
model adaptation significantly contributes to the separation
between common and private data. Taking a closer look at
the visualization, it becomes evident that both LEAD and
UMAD w/ LEAD are particularly effective in achieving a
more distinct separation between common and private data.
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Figure 3. The t-SNE feature visualization for Source Model, UMAD, LEAD, and UMAD w/ LEAD on Cl→Re (Office-Home) OPDA
task. Points in red denote unavailable source-common data, points in gray represent unavailable source-private data, points in blue illustrate
target-common data, points in lavender illustrate target-private data, individually. It is easy to conclude that both LEAD and UMAD w/
LEAD are effective in achieving a clear separation of common and private data.
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Figure 4. More Robustness Analysis. (a) shows the sensitivity to
|Lt

i| on Office-31 in the OPDA scenario. (b) illustrates the H-score
with respect to ω on VisDA in the OPDA scenario.

More Robustness Analysis. In addition to the robustness
analysis presented in the main paper, we extend our inves-
tigation to the parameter sensitivity of the nearest neighbor
set size |Lt

i| in the context of the feature consensus learning
objective Lcon. This analysis is conducted on the Office-
31 dataset within the OPDA scenario, where the range of
λ is set to [1, 2, 3, 4, 5, 6]. As depicted in Figure 4 (a), the
results indicate that our LEAD framework demonstrates sta-
bility around the chosen parameter value of |Lt

i| = 4. Ad-
ditionally, in Figure 4 (b), we further analyze the H-score in
relation to the threshold ω on the VisDA dataset, also in the
OPDA scenario. It demonstrates a relative stability of the
H-score around ω = 0.55. Through an oracle validation,
we could even achieve better performance when ω = 0.60.
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