
LLMs are Good Action Recognizers

Supplementary Material

1. Additional Ablation Studies

We here conduct more ablation experiments on the X-Set
protocol of the NTU RGB+D 120 dataset.

Table 1. Evaluation on using dif-
ferent backbones for LLaMA.

Method Accuracy Runtime(s)
LLaMA-7B 90.6 0.21
LLaMA-13B 91.5 0.39

Impact of using different
backbones for LLaMA.
In the main experiments,
we use the large language
LLaMA with LLaMA-13B
as its backbone. Here, to verify the generality of our frame-
work, we also test using the smaller LLaMA-7B as the
backbone. In Tab. 1, we report the overall accuracy, and
the average runtime per action sample (when run in batch).
As shown in Tab. 1, when a smaller backbone is used for the
large language model, our framework can also achieve good
performance. This shows the generality of our framework.
Despite this, we also observe that LLaMA-13B with a larger
model architecture can further improve the performance of
our framework.

Table 2. Evaluation on
the number of tokens
U .

Method Accuracy
U = 128 90.1
U = 256 91.1
U = 512 91.5
U = 1024 91.5
U = 16384 90.4

Impact of the number of tokens
U . In our framework, we set the
number of tokens U in the codebook
to be 512. Here we evaluate other
choices of U , and report the results
in Tab. 2. As shown, the model per-
formance improves with U when U
is smaller than 512, becomes stabi-
lized after U reaches 512, and drops
when U is set to be a very large number (16384). This might
be because, while building the codebook with more tokens
can lead the quantization process to be performed more ac-
curately, involving too many tokens in the codebook may
lead repeated features to be learned by different tokens and
thus lead to training difficulties. Taking the above into con-
sideration, we set U to 512 in our experiments.

Table 3. Evaluation on
the curvature c.

Method Accuracy
c = 0.1 90.8
c = 0.5 91.3
c = 1 91.5
c = 5 91.5
c = 10 91.4

Impact of the curvature c. In our
framework, during constructing the
hyperbolic codebook CH , we set
the curvature c for the Poincaré ball
model to be 1. Here we also as-
sess other choices of c ranging from
0.1 to 10. As shown in Tab. 3,
our framework gets optimal perfor-
mance when c is set to 1 or 5, and c = 1 is used in our
experiments. Besides, with different choices of c from 0.1
to 10, our framework outperforms the previous state-of-the-
art method consistently. This demonstrates the robustness
of our framework to this hyperparameter.

Table 4. Evaluation on
the batch size B.

Method Accuracy
B = 64 91.0
B = 128 91.4
B = 256 91.5
B = 512 91.5

Impact of the batch size B. In our
framework, during the training pro-
cess of the action-based VQ-VAE
model, we set the batch size B to be
256. Here to evaluate the impact of
the batch size B, we evaluate differ-
ent choices of B and report the re-
sults in Tab. 4. As shown, the model performance increases
with the batch size B consistently when B is smaller than
256, and becomes stabilized after B reaches 256. Thus, we
set B to 256 in our experiments.
Impact of regularizing the token usage frequency of “ac-
tion sentences” to follow different distributions. In our
framework, we aim to regularize the set of “action sen-
tences” to follow Zipf’s law. To achieve this, we incor-
porate LZipf into our total loss function to minimize the
difference between the distribution Dfreq representing the
token usage frequency of “action sentences” and the Zipf
distribution DZipf (regularizing using the Zipf distribu-
tion). Here to further evaluate the efficacy of LZipf , we test
two variants. In the first variant (no regularization), we re-
move LZipf from the learning process. In the second vari-
ant (regularizing using the uniform distribution), instead
of minimizing the difference between Dfreq and DZipf , we
formulate the loss function to minimize the difference be-
tween Dfreq and the uniform distribution Duniform. As
shown in Tab. 5, our framework outperforms both variants.
This further shows the efficacy of minimizing the difference
between Dfreq and DZipf , which regularizes the set of “ac-
tion sentences” to follow Zipf’s law.

Table 5. Evaluation on regularizing the token usage frequency of
“action sentences” to follow different distributions.

Method Accuracy
No regularization 89.9
Regularizing using the uniform distribution 90.6
Regularizing using the Zipf distribution 91.5

2. Additional Details about the Architecture of
the Action-based VQ-VAE Model

With respect to the architecture of the action-based VQ-
VAE model in our framework, inspired by previous VQ-
VAE works [2, 5, 6], both the encoder and the decoder of
our action-based VQ-VAE model consist of 1D convolu-
tion layers together with ReLU activation functions and the
skip connection design. Besides, inspired by previous ac-
tion recognition works [1, 4], we also involve the encoder
of our model with graph convolution layers and 3D-CNN



blocks to better represent the input action signals (i.e., the
skeleton sequences). Furthermore, we involve the decoder
of our model with up-sampling layers to facilitate action
signal reconstruction. We also follow [2, 5] to use expo-
nential moving average and codebook reset in the training
process of our action-based VQ-VAE model.

3. Additional Details about Corr(tb)

In our framework, we encourage the “action sentences” to
follow the context-sensitivity bias and use more correlated
tokens via Lcontext. In Sec. 3.1 in the main paper, dur-
ing calculating Lcontext, we define a Corr(·) operation and
take tb as its input to calculate the number of correlated to-
kens used in discretizing f b

1:W . Remind that inspired by [3],
we regard each token cu in the first half of the codebook
(i.e., u ∈ {1, ..., U

2 }) and the token cu+U
2

in the second half
of the codebook to be a pair of correlated tokens. Besides,
tb is a vector with length U , and the value of the u-th ele-
ment of tb represents the number of times token cu is used
in discretizing f b

1:W .
We then discuss how we perform Corr(tb) in more de-

tail as follows. Specifically, Corr(tb) is performed in the
following three steps: (1) Firstly, for every element of tb in
its first half (i.e., u ∈ {1, ..., U

2 }), we perform min pooling
with size 2 over it and its pair element in the second half
of tb (e.g., a min pooling operation is then performed over
the u-th element of tb and the (u + U

2 )-th element of tb).
(2) We then store these U

2 min pooling outputs sequentially
in a vector tbpooling . Note that by doing so, the value of
the u-th element of tbpooling represents the number of times
both the token cu and the token cu+U

2
in the pair are used in

discretizing f b
1:W . (3) Finally, as the total number of corre-

lated tokens used is two times to total number of pairs used,
we calculate the total number of correlated tokens used in
discretizing f b

1:W as Corr(tb) = 2× sum(tbpooling).

4. Additional Details about the Evaluation on
Unseen Activity Classes

In Sec. 4.4 in the main paper, to evaluate our framework
on unseen activity classes, we use a new evaluation proto-
col. Specifically, under this protocol, 3 classes from the
NTU RGB+D dataset are randomly selected to form the
unseen class list during each time of evaluation, and this
evaluation is performed for five times. Below, we list the
unseen classes we randomly select in each time of eval-
uation: (1) [“brushing hair”, “kicking something”, “jump
up”], (2) [“wear a shoe”, “make ok sign”, “shake fist”], (3)
[“thumb up”, “reach into pocket”, “take off a hat/cap”], (4)
[“bounce ball”, “cutting nails”, “point finger at the other
person”], and (5) [“wear jacket”, “apply cream on face”,
“put on headphone”].

5. Illustration on the Testing Process
In Fig. 1, we demonstrate the testing process of our frame-
work. As shown, during the testing process of our frame-
work, we first project the input action signal into its cor-
responding “action sentence” of discrete tokens. We then
complete the instruction to the large language model by fill
in the [tokens] part of the sentence based on the derived “ac-
tion sentence”. Finally, we pass the instruction to the large
language model to perform action recognition.

Figure 1. Illustration on the testing process of our framework.

References
[1] Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, and Bo Dai.

Revisiting skeleton-based action recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2969–2978, 2022. 1

[2] Evonne Ng, Sanjay Subramanian, Dan Klein, Angjoo
Kanazawa, Trevor Darrell, and Shiry Ginosar. Can language
models learn to listen? In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10083–
10093, 2023. 1, 2

[3] Isabel Papadimitriou and Dan Jurafsky. Pretrain on just struc-
ture: Understanding linguistic inductive biases using transfer
learning. arXiv preprint arXiv:2304.13060, 2023. 2

[4] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal
graph convolutional networks for skeleton-based action recog-
nition. In Proceedings of the AAAI conference on artificial
intelligence, 2018. 1

[5] Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli
Huang, Yong Zhang, Hongwei Zhao, Hongtao Lu, and Xi
Shen. T2m-gpt: Generating human motion from textual
descriptions with discrete representations. arXiv preprint
arXiv:2301.06052, 2023. 1, 2

[6] Yaqi Zhang, Di Huang, Bin Liu, Shixiang Tang, Yan Lu, Lu
Chen, Lei Bai, Qi Chu, Nenghai Yu, and Wanli Ouyang. Mo-
tiongpt: Finetuned llms are general-purpose motion genera-
tors. arXiv preprint arXiv:2306.10900, 2023. 1


	. Additional Ablation Studies
	. Additional Details about the Architecture of the Action-based VQ-VAE Model
	. Additional Details about Corr(tb)
	. Additional Details about the Evaluation on Unseen Activity Classes
	. Illustration on the Testing Process

