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Abstract

In this supplementary material, we first present addi-
tional details pertaining to the proposed Category-Aware
Auto-Annotation (CAAA), MIML dataset and APSC-Net.
Subsequently, we present the comparison experiments for
constrained image splicing localization on the widely-used
synthetic benchmarks. Additionally, we present the perfor-
mance of the classification model within the CAAA. Fur-
thermore, we present extensive experiments regarding the
APSC-Net and the proposed MIML dataset. Finally, we
present additional qualitative results for visual comparison.

1. More Details of the CAAA
In this section, we present additional details about the

Corr function, the model’s structure and training configu-
ration of the proposed Category-Aware Auto-Annotation.

1.1. More Details of the Corr Function

As described in Section 3.3 of the paper, the correla-
tion function is the one widely used in previous works [10,
11, 21]. To be specific, given two feature map Fa, Fb ∈
Rh×w×d, and fa(ia, ja) ∈ Fa, fb(ib, jb) ∈ Fb denote
the d-dimension vector at specific positions. The cross-
correlation maps ca,b ∈ Rh×w×(h×w) contain the scalar
product of a pair of individual vectors fa(ia, ja), fb(ib, jb)
at each position (ia,b, ja,b, ka,b), as equation (1).

ca,b(ia,b, ja,b, ka,b) = fa(ia, ja)
T fb(ib, jb) (1)

in which
ib = mod(ia + it, h), jb = mod(ja + jt, w)

ia,b = ia, ja,b = jb and ka,b = w · it + jt
(2)

The constraints in equation (2) mean that the correla-
tion maps in the corresponding channel ka,b must satisfy
the strong spatial restriction. To reduce the negative impact
of uncorrelated signals, the average, maximum and sorted
correlation maps are generated as:

cavga,b (ia,b, ja,b) =
1

h× w

∑
ka,b

ca,b(ia,b, ja,b, ka,b) (3)

cmax
a,b (ia,b,ja,b) = argmaxka,b

(ca,b(ia,b, ja,b, ka,b))

where 0 ≤ kab ≤ (h× w)
(4)

csrta,b(ia,b, ia,b, k) = ca,b(ia,b, ia,b, kt)

kt ∈Top-K(sortka,b
(sum(ca,b[:, :, ka,b])))

(5)
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Figure 1. The detailed structure of the decoder in the pro-
posed Difference-Aware Semantic Segmentation and the Seman-
tic Aligned Correlation Matching. ‘D‘ denotes dilated conv-layer
with dilation size D. ‘Avg‘ denotes global average-pooling.

where Top-K denotes the function that selects the in-
dexes of the top-K values (K is empirically set to 14).
The resulting output feature maps are denoted by ĉa,b
= [cavga,b , c

max
a,b , csrta,b ], and ĉa,b ∈ Rh×w×(K+2), in which

2 dimensions correspond to the average and maximum
correlation maps, whereas the remaining K dimensions
are the sorted correlation maps. Similarly, by replacing
Fb with Fa, we can obtain self-correlation maps ĉa,a =
[cavga,a , c

max
a,a , csrta,a]. For the sake of clarity, we denote the cor-

relation function Corr employed in our model as:

Corr(Fa, Fb) = [ĉa,b, ĉa,a] (6)

1.2. More Details of the Structure

Both the proposed Difference-Aware Semantic Segmen-
tation (DASS) and the proposed Semantic Aligned Correla-
tion Matching (SACM) employ the encoder-decoder struc-
ture. We adopt VAN [5] and ConvNeXt [13] as the en-
coder backbone model for them respectively. Inspired by
DeepLabV3+ [1], we utilize the decoder with dilated conv-
layers for both of them, as shown in Fig 1. Given four in-
put features maps F0, F1, F2, F3, we first resize them to the
same resolution as F1 and concatenate them at the channel
dimension. Then, channel reduction is performed to obtain
Fo,1. Consequentially, we extract features from Fo,1 using
conv-layers with dilation (1, 6, 12, 24) and global average-
pooling, concatenate the results and reduce the channels to
get Fo,2. Afterwards, Fo,2 is concatenated with a channel-
reduced version of F0 to get Fo,3, and Fo,3 is utilized
for the final prediction. For DASS, the input features
F0, F1, F2, F3 are the output of the encoder. For SACM,
the input features F0, F1, F2 are the output of the encoder,
the F3 is the correlation features Fcorr.



1.3. More Details of the Training Configuration

In the experiments in Section 6.1 of the paper, we adopt
Cross-Entropy loss and AdamW optimizer [14] with the
learning rate linearly decaying from 1e-4 to 1e-6. A sam-
pling ratio of approximately 5:1:1 is utilized for the syn-
thetic, CASIAv2 and IMD20 datasets respectively. The
models are trained for 160k iterations with a batch-size of
8. The IMD20 dataset is split into SPG and SDG using the
classifier described in Section 4.1 of the paper.

2. More Details of the MIML Dataset

The proposed MIML dataset comprises a total of
123,150 manually forged images, with 76,978 images be-
longing to the Shared Probe Group and 46,172 images be-
longing to the Shared Donor Group. The statistics about the
image resolution and the proportion of forged area within
the MIML dataset are presented in Fig 2.

3. More Details of the APSC-Net

In this section, we present the detailed structure of the
Calibration Kernel Mapping Network and the Classification
Head of the Self-Calibration module in the APSC-Net. The
APSC-Net has a total of 143M parameters.

3.1. More Details of the CKMN

The detailed structure of the Calibration Kernel Mapping
Network (CKMN) is presented in Table 1. Firstly, the in-
put mask prediction with a shape of (B, 1, H, W) is down-
sampled to (B, 1, 64, 64) utilizing bi-linear interpolation.
Here ‘B‘ denotes the batch-size. Subsequently, the mask is
fed into the CKMN, which produces an output vector of (B,
961). Afterwards, the vector is reshaped into (B, 1, 31, 31)
to obtain the calibration kernel.

LayerName IN C OUT C K S IN S OUT S
Conv-BN-ReLU 1 32 5 2 64 32
Conv-BN-ReLU 32 64 5 2 32 16
Conv-BN-ReLU 64 128 5 2 16 8
Conv-BN-ReLU 128 256 5 2 8 4
Conv-BN-ReLU 256 512 3 1 4 4

Avg-Pooling 512 512 4 1 4 1
Linear 512 961 - - 1 1

Table 1. Detailed structure of the Calibration Kernel Mapping
Network. ‘IN C‘ denotes the input channels, ‘OUT C‘ denotes
the output channels, ‘K‘ denotes the kernel size of the conv-layer,
‘S‘ denotes the stride of the conv-layer, ‘IN S‘ denotes the input
shape, ‘OUT S‘ denotes the output shape.

3.2. More Details of the Classification Head

The detailed structure of the Classification Head is pre-
sented in Table 2. The classification head takes the concate-
nation of Fo and Fref2 as input, and determines whether the
input image is manipulated or not at image-level.

LayerName IN C OUT C K S IN S OUT S
Conv-BN-ReLU 3072 512 1 1 64 64

Max-Pooling 512 512 2 2 64 32
Conv-BN-ReLU 512 256 3 1 32 32

Max-Pooling 256 256 2 2 32 16
Conv-BN-ReLU 256 256 3 1 16 16

Max-Pooling 256 256 16 1 16 1
Linear 256 2 - - 1 1

Table 2. Detailed structure of the Classification Head. ‘IN C‘
denotes the input channels, ‘OUT C‘ denotes the output channels,
‘K‘ denotes the kernel size of the conv-layer, ‘S‘ denotes the stride
of the conv-layer, ‘IN S‘ denotes the input shape, ‘OUT S‘ de-
notes the output shape.

3.3. Comparison between previous methods

There have been many designs for image manipulation
localization, however, our APSC-Net differs from previous
methods in the following aspects:

For multi-view perception, previous methods simply
concatenate different feature maps in the channel dimen-
sion (e.g. CAT-Net [8], MVSS-Net [2]). While ours fuses
different feature maps with adaptive weights.

For prediction refinement, previous works (e.g. PSCC-
Net [9]) initialize with the coarsest prediction derived from
the highest level feature map. While ours initializes with
the finest prediction calibrated with a learnable kernel.

4. Extensive Experiments
In this section, we conduct extensive experiments to

further evaluate the effectiveness of the proposed MIML
dataset, Category-Aware Auto-Annotation and APSC-Net.

4.1. Comparison Experiments for MIML

To further evaluate the effectiveness of the proposed
MIML dataset, we replace it with DEFACTO [15], a
dataset for image manipulation localization that synthesized
with elaborately designed pipelines. We re-train the PSCC-
Net [9] and CAT-Net [8] utilizing this dataset with the same
training configuration and sampling ratio as that of MIML.
As shown in Table 3, the incorporation of DEFACTO does
not lead to an discernible improvement in the models’ per-
formance. In contrast, the inclusion of MIML significantly
enhances the models. It is the high-quality of our MIML
dataset that brings the improvement, rather than the mere
increase in size and diversity of the training data.



PSCC-Net [9]
IoU F1Dataset

Ori +DEFACTO +Ours gain(DEFACTO) gain(Ours) Ori +DEFACTO +Ours gain(DEFACTO) gain(Ours)
CASIAv1 [3] .401 .394 .609 -2% +52% .430 .429 .649 -0% +51%
NIST16 [4] .247 .223 .402 -10% +62% .295 .270 .476 -8% +61%

Coverage [20] .197 .231 .395 +17% +100% .218 .256 .477 +17% +118%
IMD20 [16] .125 .137 .470 +10% +277% .156 .171 .541 +10% +247%

Average .243 .246 .469 +2% +93% .275 .282 .536 +2% +95%

CAT-Netv2 [8]
IoU F1Dataset

Ori +DEFACTO +Ours gain(DEFACTO) gain(Ours) Ori +DEFACTO +Ours gain(DEFACTO) gain(Ours)
CASIAv1 [3] .660 .673 .691 +2% +5% .703 .715 .728 +2% +4%
NIST16 [4] .239 .220 .353 -8% +48% .287 .261 .422 -9% +47%

Coverage [20] .245 .200 .302 -18% +23% .286 .230 .389 -19% +36%
IMD20 [16] .157 .164 .547 +4% +248% .192 .200 .629 +4% +228%

Avgrage .325 .314 .473 -3% +46% .367 .352 .542 -4% +48%

Table 3. Comparison study on the proposed MIML dataset. ‘+DEFACTO‘ denotes the inclusion of DEFACTO dataset during training.
‘+Ours‘ denotes the inclusion of our MIML dataset during training. ‘gain‘ denotes the ratio of improvement in performance.

4.2. Extensive CIML Experiments

For a comprehensive comparison with the previous
constrained image splicing localization methods, we re-
train the proposed Semantic Aligned Correlation Match-
ing model with a million synthetic data for 6 epochs, fix-
ing the input size to 256 × 256 following the previous
works [18, 23]. The model is evaluated on the widely-used
synthetic datasets, Combination Sets [11]. As shown in Ta-
ble 4, our model achieves state-of-the-art performance.

4.3. Classification Performance Evaluation

To evaluate the performance of the classification model
within the proposed Category-Aware Auto-Annotation, we
randomly picked 500 image pairs from the IMD20 dataset,
and manually divided them into SPG and SDG, resulting
in a final tally of 258 SDG and 242 SPG pairs. Consider-
ing that a very small proportion of SPG image pairs are not
spatially aligned, which could negatively impact the predic-
tion’s quality, we also include a linear classification layer to
filter them out. To construct the misaligned SPG image pair
for training, we randomly crop a rectangular region from an
image in an SPG pair and resize the region to its source im-
age’s resolution. Totally, 14 pairs from the annotated SPG
are misaligned. The classification results are presented in
Table 5. It is evident that the voting ensemble of the classi-
fication models produces accurate enough outcomes.

4.4. Extensive Experiments for APSC-Net

Comparison Study for APSC-Net. We further fine-tune
our pre-trained APSC-Net following the widely-used train-
ing splits [17, 24] of the specific datasets, and compare it

Difficult NormalMethod IoU MCC NMM IoU MCC NMM
DMVN [21] .2772 .3533 -.4382 .6818 .7570 .4042
DMAC [11] .5433 .6584 .1026 .8317 .8833 .6877

AttentionDM [10] .7228 .8108 .4793 .8980 .9320 .8253
SADM [23] .7759 .8128 .5129 .9040 .8288 .8265
MSTAF [18] .8394 .8918 .7064 .9510 .9700 .9151

Ours .8507 .9132 .7371 .9548 .9725 .9291

Table 4. Comparison study for the proposed Semantic Aligned
Correlation Matching model on the Combination Sets [11].

with SOTA methods on the remaining testing splits. As
shown in Table 6, our APSC-Net still outperforms SOTA
methods, showing its strong generalization ability.
Robustness Evaluation for APSC-Net We evaluate the
robustness of the pre-trained APSC-Net on NIST16 with
the AUC metric following the standard setting in previous
works [17, 24]. As shown in Table 7, our APSC-Net shows
satisfactory robustness against the common distortions.
Ablation Study for APSC-Net. The Adaptive Percep-
tion (AP) module is designed to enable the model to
adaptively select an optimal combination of observa-
tions. The Segmentation-based Self Calibration (SSC) and
Classification-based Self Calibration (CSC) are designed to
assist the model in getting more accurate predictions by in-
depth analyses with its initial predictions. We conduct abla-
tion study to verify the effectiveness of these components.
As shown in Table 8, all of the proposed modules contribute
towards a higher performance of the APSC-Net.
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Figure 2. Some statistics of our MIML dataset.

method SDG SPG Misaligned
P R F P R F P R F

DiNAT [6] .992 .992 .992 1 .996 .998 .867 .929 .897
SwinTrans [12] .996 .981 .988 1 .996 .998 .737 1 .849
ConvNeXt [13] .996 .992 .994 1 .996 .998 .875 1 .933

Ensemble .996 1 .998 1 .996 .998 1 1 1

Table 5. Classification experiments for SDG, SPG and misaligned
SPG. ‘P‘ denotes precision, ‘R‘ denotes recall, ‘F1‘ denotes F1-
score. ‘Ensemble‘ denotes the ensemble of the three models.

CASIAv1 NIST16 CoverageMethod AUC F1 AUC F1 AUC F1
RGB-N [25] .795 .408 .937 .722 .817 .437

SPAN [7] .838 .382 .961 .582 .937 .558
MVSS-Net [2] .877 .522 .942 .814 .849 .504
CL-Net [26] .895 .584 .985 .823 .857 .512

PSCC-Net [9] .875 .554 .996 .819 .941 .723
ObjectFormer [19] .882 .579 .996 .824 .957 .758

NCL [24] .864 .598 .912 .831 .928 .801
SAFL-Net [17] .908 .740 .997 .879 .970 .803

Ours (w/ MIML) .983 .860 .998 .914 .976 .878

Table 6. IML comparison study for the fine-tuned models.

5. Visualization

In this section, we present qualitative results for our
MIML dataset and APSC-Net. The qualitative results for
ablation study on our MIML dataset are shown in Fig 3, the
qualitative results for comparison study on the pre-trained
APSC-Net are shown in Fig 4, and the qualitative results
for ablation study on our APSC-Net are shown in Fig 5.
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