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1. Differentiable 3D MVWA rendering proof

Any Bézier curve can be represented as the following format:

B(t) = (1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3. (1)

Given a plane π, its normal vector N and a point q in the plane, the projection of any point P (t) of curve B(t) on plane π
could be represented as P ′(t):

P ′(t) = P (t)− (N · (P (t)− q)) ∗N, (2)

where · denotes the dot product operation.

Our objective is to prove that the projection of B(t) on the plane π (B′(t)) is equal to the curve formed by the projected
points of the control points of that curve (B′′(t) = {p′0, p′1, p′2, p′3}) on the same plane π, i.e., B′(t) = B′′(t).

Based on Eqs. 1 and 2, we can obtain the projection curve B′(t) of B(t) on the plane π:

B′(t) = [(1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3]

− {N · [(1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3 − q]} ∗N.
(3)

We can also obtain the curve B′′(t) formed by the projected points of the control points on the plane π:

B′′(t) = (1− t)3[p0 − (N · (p0 − q)) ∗N ] + 3(1− t)2t[p1 − (N · (p1 − q)) ∗N ] + 3(1− t)t2[p2 − (N · (p2 − q)) ∗N ] + t3[p3 − (N · (p3 − q)) ∗N ]

= [(1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3]

− [(1− t)3(N · (p0 − q)) ∗N + 3(1− t)2t(N · (p1 − q)) ∗N +3(1− t)t2(N · (p2 − q)) ∗N + t3(N · (p3 − q)) ∗N ].

(4)
Comparing Eq. 3 and 4, we find that the red parts are the same. Therefore, we only need to show that the blue part in

Eq. 4 equals to the green part in Eq. 3. Since vector dot product satisfies the distributive over vector addition properties, i.e.,
a⃗ · (⃗b+ c⃗) = a⃗ · b⃗+ a⃗ · c⃗, we can deform the blue part of Eq. 4 as follows:

(1− t)3(N · (p0 − q)) ∗N + 3(1− t)2t(N · (p1 − q)) ∗N + 3(1− t)t2(N · (p2 − q)) ∗N + t3(N · (p3 − q)) ∗N
={N · [(1− t)3(p0 − q) + 3(1− t)2t(p1 − q) + 3(1− t)t2(p2 − q) + t3(p3 − q)]} ∗N
={N · [(1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3 − ((1− t)3 + 3(1− t)2t+ 3(1− t)t2 + t3) ∗ q)]} ∗N
={N · [(1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3 − q]} ∗N

(5)
Based on the above proof, we can transform the 3D Bézier curve rendering problem into a 2D rendering problem based on

the projection of 3D control points. Given a 3D wire and a viewpoint, we can have a raster sketch with the utilisation of [3] in
our 3D to 2D renderer. And more importantly, the whole process is differentiable.
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2. Bad case analysis

When we use VectorFusion [2] for 2D sketch generation, the results are limited by the diffusion prior. In general, given any text
prompt, when the diffusion model generates images well, VectorFusion can also generate great sketches. However, this is not
the case for DreamWire, as there are multi-view conflicts to consider. We analyse this problem with the following examples.

Fig. 1 shows the concepts of “apple”, “banana” and “flower”. However, we can notice that there is a lot of redundancy
present in the sample of “apple”, e.g., some leaves and a logo of “apple” in the centre. Compared to bananas and flowers,
apples have a simpler structure. Therefore, if they are drawn within the same number of strokes, there are only two scenarios:
the apples are drawn very intricately, or the bananas and flowers are drawn more abstractly. However, generative diffusion
models like those in [5, 6], trained solely on images, lack significant abstraction skills for simple stroke outlines. Consequently,
DreamWire is better at making complex sketches, e.g., “portraits of three people”. This may go against human intuition.
In addition, MVWA [1] mentioned that their method produces clearly visible artifacts due to the difficulty in resolving
inconsistency from simple contours. Enhancing generative models’ abstraction abilities could mitigate these challenges.

Apple Banana Flower

Walter White Jesse Pinkman Saul Goodman

Figure 1. The textual prompts for three viewpoints are “apple”, “banana” and “flower”, respectively. All prompts possess the following
prompt prefix: “a simple drawing of [text]”.

Fig. 2 shows the concepts of “Walter White”, “Jesse Pinkman” and “Saul Goodman”. We can notice that there is a lot of
redundancy in the sample of “Walter White”. It’s common knowledge that Walter White is bald while Jesse Pinkman is not.
During our generation process, their heads are positioned at the same height along the z-axis. Therefore, in order to draw
Jesse’s hair, DreamWire has to add some extra strokes to the sideburns of Walter White. The potential for conflicting content
of different viewpoints is an issue that users need to consider in future applications.

Apple Banana Flower

Walter White Jesse Pinkman Saul Goodman

Figure 2. The textual prompts for three viewpoints are “Walter White”, “Jesse Pinkman” and “Saul Goodman”, respectively. All prompts
possess the following prompt prefix: “a head of [text]”.



3. Time-consuming analysis

The time required to create a piece of Multi-View Wire Art varies significantly across different approaches: a professional
artist typically requires several months. Compared to this, DreamWire and the baseline method [1, 4] show a substantial
improvement in time. ShadowArt [4] is based on the resize and voxel search of the target image, and it usually takes only
1 minute to complete. However, when there is a conflict between the three input target images (which is a very common
situation), it produces a poor visual hull or even crashes. MVWA [1] takes about 2 to 10 hours, depending on the voxel
resolution and the complexity of the input images, whereas DreamWire significantly reduces this to approximately 30 minutes.
Our method utilises a text-to-image generation model to raise the upper limit of creativity with acceptable time consumption
compared to rule-based methods. While SDS may not be recognised for its efficiency in AIGC, it emerges as the most efficient
method known to us for the task of Multi-View Wire Art creation. In addition, with the widespread use of SDS for 3D
generation tasks, the acceleration of SDS has been investigated [7]. We anticipate that the performance of our proposed method
will be enhanced with advancements in generative AI.

4. Physical display

In our main paper, we highlight that utilising LMST compromises aesthetics. To address this, we employ laser crystal in creating
our multi-view wire art, as demonstrated in Fig. 3. Please watch the video to experience the fun of changing perspectives.

MVWA
Figure 3. The textual prompts for three viewpoints are “Isaac Newton”, “Albert Einstein” and “Alan Turing”, respectively. All prompts
possess the following prompt prefix: “a head of [text]”.
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