
SUMMARY OF THE APPENDIX
This appendix provides more details of our approach, ad-

ditional literature review, further discussions, additional ex-
perimental results, broader impacts, and limitations. These
topics are organized as follows:

• §A: Details of Training Setup
• §B: Details of Evaluation Metrics
• §C: Rotation Invariance
• §D: Clustering Algorithm
• §E: Additional Literature Review
• §F: More Quantitative Results
• §G: More Qualitative Results
• §H: Broader Impacts
• §I: Limitations

A. Details of Training Setup

In our experiments, we train our framework using a SGD
optimizer with learning rate of 1e-3 and a weight decay of
5e-4. Due to memory constraints, we set the batch size to
32, 24, 8, and 8 for EC, GO, Fold Classification, and Re-
action tasks, respectively. The framework comprises four
iterations of clustering, which employ varying numbers of
channels at each iteration. For Fold Classification, we use
256, 512, 1024 and 2048 channels for the four iterations, re-
spectively. For EC, GO and Reaction, we use 128, 256, 512
and 1024 channels for the four iterations, respectively. The
training process spans 200 or 300 epochs for each dataset,
and the best model is selected based on the validation per-
formance. Details can be seen in Table 7.

In addition, we adopt data augmentation techniques,
similar to those used in [22, 38] to augment the data for
fold and reaction classification tasks. Specifically, we ap-
ply Gaussian noise with a standard deviation of 0.1 and
anisotropic scaling within the range of [0.9, 1.1] to the
amino acid coordinates in the input data. We also add the
same noise to the atomic coordinates within the same amino
acid to ensure that the internal structure of each amino acid
remains unchanged.

B. Details of Evaluation Metrics

We first present the details of evaluation metrics for enzyme
commission number prediction and gene ontology term pre-
diction. The objective of these tasks is to determine whether
a protein possesses specific functions, which can be viewed
as multiple binary classification tasks. We define the first
metric as the protein-centric maximum F-score (Fmax). This
score is obtained by calculating the precision and recall for
each protein and then averaging the scores over all proteins.
To be more specific, for a given target protein i and a de-
cision threshold � 2 [0, 1], we compute the precision and

recall as follows:

precisioni(�) =

P
a 1[a 2 Pi(�) \Gi]P

a 1[a 2 Pi(�)]
,

recalli(�) =
P

a 1[a 2 Pi(�) \Gi]P
a 1[a 2 Gi]

,

where a represents a function term in the ontology, Gi is a
set of experimentally determined function terms for protein
i, Pi(�) denotes the set of predicted terms for protein i with
scores greater than or equal to �, and 1[·] 2 {0, 1} is an
indicator function that is equal to 1 if the condition is true.

Then, the average precision and recall over all proteins
at threshold � is defined as:

precision(�) =
P

i precisioni(�)

M(�)
,

recall(�) =
P

i recalli(�)
N

,

where we use N to represent the number of proteins, and
M(�) to denote the number of proteins on which at least
one prediction was made above threshold �, i.e., |Pi(�)| >
0. By combining these two measures, the maximum F-score
is defined as the maximum F-measure value obtained across
all thresholds:

Fmax = max
�

⇢
2⇥ precision(�)⇥ recall(�)

precision(�) + recall(�)

�
.

The second metric, mean accuracy, is calculated as the
average precision scores for all protein-function pairs, which
is equivalent to the micro average precision score for multi-
ple binary classification.

C. Rotation Invariance
Rotation Invariance. To make our method rotationally in-
variant [71], we augment the distance information d

n
k by

using a relative spatial encoding [40]:

dnk =
�
d(||zk � zn||), O

>
n

zk � zn

||zk � zn||
, q(O>

n O
n
k)

�
, (6)

where On = [bn, jn, bn⇥ jn], bn denotes the negative bi-
sector of angle between the ray (vn�1�vn) and (vn+1�vn),
and jn is a unit vector normal to that plane. Formally, we
have un = zn�zn�1

||zn�zn�1|| 2 R3, bn = un�un+1

||un�un+1|| 2 R3,
jn = un⇥un+1

||un⇥un+1|| 2 R3, where ⇥ is the cross product. The
first term in Eq. 6 is a distance encoding d(·) lifted into the
radius r, the second term is a direction encoding that corre-
sponds to the relative direction of vnk ! vn, and the third
term is an orientation encoding q(·) of the quaternion rep-
resentation of the spatial rotation matrix. This encoding ap-
proach allows us to capture both local and global geometric
information while being invariant to different orientations.
Related experimental results are seen in Table 8.

D. Neural Clustering Algorithm

Table 7. The hyperparameter configurations of our method vary across different tasks. We choose all the hyperparameters based on their
performance on the validation set. See details in §A.

Hyperparameter EC GO-BP GO-MF GO-CC Fold Classification Reaction
batch size 32 24 24 24 8 8
Channels [128,256,512,1024] [128,256,512,1024] [128,256,512,1024] [128,256,512,1024] [256,512,1024,2048] [128,256,512,1024]
epoch 300 300 300 300 200 200

Algorithm 1: Pseudo-code of Neural Clustering
Input : Protein P = (V, E ,Y); Amino acid

embedding ej for amino acid
vj 2 V; Cluster nomination ratio !;
Nomination operator NOMINATE;
Index selection operator
INDEXSELECT; Add self-loop
operator ADDSELFLOOPS;
Spherosome clustering operator
RADIUS; Spherosome clustering
radius r; ReLU activation function
�; Geometric coordinates Pos;
Geometric orientations Ori;
Sequential orders Seq

Intermediate: Clustered features Xc and Scored
cluster features X̂c; Adjacency
matrix A; Edge index E; Cluster
scores vector �; Nominated index
index

Output : Nominated amino acid features X ,
coordinates Pos, orientations Ori,
sequential orders Seq

1 for t = 1, 2, 3, 4 do
2 A RADIUS(Pos, r);
3 E ADDSELFLOOPS(A);
4 for n = 1...Nt�1 do
5 x̃n ~0;
6 for k = 1...K do
7 g

n
k ,o

n
k , d

n
k , sk (Pos,Ori, Seq);

8 x
n
k f(gn

k ,o
n
k , d

n
k , sk, ek);

9 �
n
k softmax(�([W1xn,x

n
k]));

10 x̃n x̃n + �
n
kx

n
k ;

11 end
12 X

c
n x̃n;

13 end
14 � GCN(Xc

, E);
15 X̂

c
 ��X

c;
16 Nt b! ·Nt�1c;
17 index NOMINATE(�, Nt);
18 X,Pos,Ori, Seq

INDEXSELECT(X̂c
, Pos,Ori, Seq, index);

19 end

E. Additional Literature Review

Graph Pooling. Graph pooling designs have been proposed
to achieve a useful and rational graph representation. These
designs can be broadly categorized into two types [53]: Flat
Pooling [6, 19, 84, 88, 93] and Hierarchical Pooling [3, 27–
29, 50, 57, 91]. Flat Pooling generates a graph-level repre-
sentation in a single step by primarily calculating the av-
erage or sum of all node embeddings without considera-
tion of the intrinsic hierarchical structures of graphs, which
causes information loss [47]. On the other hand, Hierarchi-
cal Pooling gradually reduces the size of the graph. Previ-
ous graph pooling algorithms, as variants of GCN, still fol-
low the message passing pipeline. Typically, they are hard
to be trained and need many extra regularizations and/or
operations. For example, Diffpool [91] is trained with an
auxiliary link prediction objective. Besides, it generates a
dense assignment matrix thus incurring a quadratic storage
complexity. Top-K pooling [27], adopts a Unet-like, graph
encoder-decoder architecture, which is much more compli-
cated than our model but only learns a simple scalar projec-
tion score for each node.

In contrast, our clustering-based algorithm is more prin-
cipled and elegant. It can address the sparsity concerns of
Diffpool and capture rich protein structure information by
aggregating amino acids to form clusters instead of learn-
ing from a single node. Furthermore, it sticks to the princi-
ple of clustering throughout its algorithmic design: SCI step
is to form the clusters by considering geometrical relations
among amino acids; CRE step aims to extract cluster-level
representations; CN step is for the selection of important
cluster centers. It essentially combines unsupervised clus-
tering with supervised classification. The forward process
of our model is inherently a neural clustering process, which
is more transparent and without any extra supervision.

F. More Quantitative Results

Rotation Invariance. We compare our framework with and
without rotation invariance on all four tasks. The results
are shown in Table 8, where we can see that rotation in-
variance improves the performance of our framework on
all tasks. For example, on protein fold classification, ro-
tation invariance boosts the average accuracy from 76.4% to
81.3%. This indicates that rotation invariance can help our
framework to capture the geometric information of proteins
more effectively and robustly.

Table 8. Analysis of the impact of rotation invariance and different numbers of CRE blocks (§4.5).

Rotation GO Fold Classification
Invariant B EC BP MF CC Fold Super. Fam. Avg. Reaction

4 1 0.825 0.430 0.618 0.464 57.7 76.3 99.4 77.8 87.6
4 2 0.866 0.474 0.675 0.483 63.1 81.2 99.6 81.3 89.6
4 3 0.857 0.466 0.669 0.474 61.8 80.2 99.5 80.5 88.9
8 2 0.781 0.392 0.614 0.436 56.4 75.3 97.9 76.4 87.1

Number of CRE Blocks. In our framework, we use B CRE
blocks at each clustering iteration to extract cluster features.
We study the impact of using different values of B from 1 to
3 on all four sub-tasks. We stop using B>3 as the required
memory exceeds the computational limit of our hardware.
The results are shown in Table 8, where we can find that
B = 2 achieves the best performance on all tasks. For in-
stance, on enzyme reaction classification,B =2 achieves an
accuracy of 89.6%, while if B = 1 or B = 3, the accuracy
drops to 87.6% and 88.9%, respectively. This suggests that
using two CRE blocks is sufficient to capture the cluster in-
formation and adding more blocks does not bring significant
improvement but increases the computational cost.

G. More Qualitative Results

More visualization results of the clustering results are pre-
sented in Fig. 7. The color of the node denotes the score
calculated in our CN step. For example, in the first row,
we can see that the protein ‘1rco.E’ has a helical structure
with some loops. After the first iteration of clustering, our
method selects some amino acids that are located at the ends
or bends of these loops and helices as the center nodes for
the next iteration. These amino acids may play an impor-
tant role in stabilizing the protein structure or interacting
with other molecules. After the second iteration of cluster-
ing, our method further narrows down the number of cen-
ter nodes by selecting those that have high scores. These
amino acids may form functional domains or motifs that are
essential for the protein function. Our method finally iden-
tifies a few amino acids that have the highest scores and are
most representative of the protein structure and function.
Through visualizing the clustering results at each iteration,
we can explicitly understand how our method progressively
discovers the critical components of different proteins by
capturing their structural features in a hierarchical way.

In addition, as shown in the figure, we present pairs of
protein chains from the same family or same protein (i.e.,
‘1rco.R’ and ‘1rco.E’, ‘3n3y.B’ and ‘3n3y.C’, ‘6gk9.B’ and
‘6gk9.D’). For example, we observe that the clustering re-
sults of ‘3n3y.B’ and ‘3n3y.C’ (two chains of the same pro-
tein) are very similar, indicating that they have similar criti-
cal amino acids that determine their structure and function.
This observation is consistent with the biological reality that
proteins from the same family or same protein often have

long stretches of similar amino acid sequences within their
primary structure, suggesting that our method is effective in
identifying these critical amino acids.

H. Broader Impacts
Our neural clustering framework for protein representation
learning has several potential applications and implications
for society. Protein representation learning can help ad-
vance our understanding of protein structure and function,
which are essential for many biological processes and dis-
eases. By discovering the critical components of proteins,
our method can inspire protein design, engineering, and
modification, which can lead to the development of novel
therapies, drugs, and biotechnologies. For example, our
framework can assist in designing new protein sequences
that exhibit specific properties or functions, such as catalyz-
ing biochemical reactions or binding to other molecules.
This can enable the creation of new enzymes, antibodies,
vaccines, and biosensors that can have a positive impact on
human health and well-being.

I. Limitations
Our neural clustering framework for protein representation
learning has several limitations that need to be addressed
in future work. First, our framework relies on the avail-
ability of protein structures, which are not always easy to
obtain or predict. Although our framework can leverage
both sequence-based and structure-based features, it may
lose some information that is only encoded in the 3D struc-
ture. Second, our framework assumes that the critical com-
ponents of a protein are determined by its amino acid se-
quence and structure, but it does not consider other factors
that may affect protein function, such as post-translational
modifications, interactions with other molecules, or envi-
ronmental conditions. Third, our framework does not ex-
plicitly account for the evolutionary relationships among
proteins, which may provide useful information for protein
representation learning. Incorporating phylogenetic infor-
mation into our framework may enhance its ability to cap-
ture the functional diversity and similarity of proteins.

!"#$%"&'(1 !"#$%"&'(2 !"#$%"&'(3 !"#$%"&'(4
Pr

ot
ei

n:
 3

n3
y.

C
Pr

ot
ei

n:
 1

rc
o.

R
Pr

ot
ei

n:
 1

rc
o.

E
Pr

ot
ei

n:
 3

n3
y.

B
Pr

ot
ei

n:
 6

gk
9.

D
Pr

ot
ei

n:
 6

gk
9.

B

Figure 7. More visualization results. See related analysis in §G.

	. Introduction
	. Related Work
	. Methodology
	. Notation and Task Setup
	. Iterative Clustering
	. Implementation Details

	. Experiments
	. Experiment on EC Number Prediction
	. Experiment on GO Term Prediction
	. Experiment on Protein Fold Classification
	. Experiment on Enzyme Reaction Classification
	. Diagnose Analysis
	. Visualization

	. Conclusion
	. Details of Training Setup
	. Details of Evaluation Metrics
	. Rotation Invariance
	. Neural Clustering Algorithm
	. Additional Literature Review
	. More Quantitative Results
	. More Qualitative Results
	. Broader Impacts
	. Limitations

