
Weakly-Supervised Audio-Visual Video Parsing with Prototype-based
Pseudo-Labeling

SUPPLEMENTARY MATERIAL

1. Model
Our model for weakly-supervised AVVP closely follows the
architecture of Tian et al. [14] but with necessary modifica-
tions as described below.
Feature Extraction. Akin to previous approaches [14, 17],
pre-trained audio CNN (Φa) and visual CNN (Φv) are em-
ployed to extract deep features for each segment. For any
video, fa

t = Φa(At) ∈ Rda and fv
t = Φv(Vt) ∈ Rdv are

features of t-th audio and visual segments, respectively.
Feature Projection. These features capture generic infor-
mation as they are extracted using pre-trained models. To
extract task-specific features, we employ projection head
networks to refine them. These audio feature sequence (Fa)
and visual feature sequence (Fv) of a video are defined as

Fa = {f̂at }Tt=1 , Fv = {f̂vt }Tt=1, (1)

where f̂at = Φproj
a (fa

t ) ∈ Rd, f̂vt = Φproj
v (fv

t ) ∈ Rd are
refined audio,visual features and Φproj

a : Rda 7→ Rd,Φproj
v :

Rdv 7→ Rd are audio, visual projection networks, respec-
tively. Using this, audio and visual features are projected
into a common d-dimensional embedding space.
Feature Aggregation. To further capture cross-modal in-
formation and inform the network about the most rele-
vant temporal segments, we employ attentive feature fusion
based on self-attention [15] inspired from [14, 17].These
aggregation features are computed as,

fat = f̂at +ΦAtt(f̂
a
t ,F

a,Fa) +ΦAtt(f̂
a
t ,F

v,Fv) (2)

fvt = f̂vt +ΦAtt(f̂
v
t ,F

v,Fv) +ΦAtt(f̂
v
t ,F

a,Fa). (3)

Here, ΦAtt(.) is scalar-dot-product attention defined as,

ΦAtt(fq,Fk,Fv) = Softmax(fqF
T
k /d)Fv. (4)

where fq,Fk,Fv are d-dimensional key, query and value
vectors, respectively.
Weakly-Supervised Event Prediction. Segment-level
event probabilities are computed using a linear classifier
with Sigmoid activation on aggregated features as,

p̂m
t = Φc(f

m
t ) ∈ RC , t ∈ [1, T ], m ∈ {a, v}, (5)

where Φc : Rd 7→ RC is a linear classifier. As only video-
level labels are available during training, we adopt atten-
tive multimodal Multi-Instance Learning (MMIL) to pre-
dict video-level event probabilities. First, modality-level
labels are computed using attentive pooling over temporal
segments in each modality. Specifically, video-level event
probabilities for audio and visual modalities of a video are
computed as

P̂a =
∑
t

wa
t p̂

a
t ∈ RC , P̂v =

∑
t

wv
t p̂

v
t ∈ RC (6)

where wa
t , w

v
t ∈ RC are attention weights (over temporal

segments) computed using a fully connected layer. Final
video-level event probability is computed using attentive-
pooling over modalities as P̂ = waP̂a + wvP̂v , where
wa, wv ∈ Rc are attention weights over modality. We mini-
mize the binary cross-entropy loss between predicted video-
level event probability vector P̂ and weak video-level label
W, given by,

LMIL = CE(P̂,W). (7)

Momentum encoder follows the same structure and con-
tains the above-described Feature Projection, Feature Ag-
gregation, and Segment Classifier blocks. The weights of
the momentum encoder are updated using an exponential
moving average ensemble of MIL-based models from dif-
ferent training steps instead of using backpropagation.

2. Experimental Results
Comparison with off-the-shelf Pseudo-Labeling meth-
ods: Here, we perform experiments to analyze how ef-
fective the existing pseudo-labeling strategies are for the
AVVP task. We compare our method with EM-MIL [9] and
Poibin [12]. The results reported in Tab. 2 indicate that both
EM-MIL and Poibin perform poorly on AVVP.

These methods [9, 12] are designed by incorporating
strong priors specific to each WS task. E.g., EM-MIL
implicitly assumes that all events co-occur (Eq.5 in [9]),
which is not valid for AVVP as event occurrence is asyn-
chronous. And Poibin [12] proportion of positives as the
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Table 1. Architecture summary. din,dout stand input and output dimensions of feature maps, respectively. All layers use Leaky-ReLU
activation.

Task Name Type din dout

Feature Extraction Audio (Φa) Pretrained VGGish
Visual (Φv) Pretrained ResNet-18

Feature Refinement

Audio (Φproj
a )

Linear 128 256
LayerNorm - 256

Linear 256 512
LayerNorm - 512

Visual (Φproj
v )

Linear 2048 1024
LayerNorm - 1024

Linear 1024 512
LayerNorm - 512

Feature Aggregation Attentive Fusion (ΦAtt) Multi-Head attention with 1-head

Weakly Supervised Classification
Segment Classifier (Φc) Linear+Sigmoid 512 25

Attention-Temporal Linear+Softmax 512 25
Attention-Modality Linear+Softmax 512 25

Table 2. Comparison with off-the-shelf Pseudo-Labeling methods.

Method Audio Visual Audio-Visual Type@AV Event@AV
Seg. Event Seg. Event Seg. Event Seg. Event Seg. Event

EM-MIL [9] 59.3 50.5 53.6 49.9 49.7 43.3 54.2 47.9 55.2 48.1
PoiBin [12] 63.1 54.1 63.5 60.3 57.7 51.5 61.4 55.2 60.6 52.3

Ours 65.9 57.3 66.7 64.3 61.9 54.3 64.8 59.9 63.7 57.9

Table 3. Effect of temperature τ on model performance.

τ
Audio Visual Audio-Visual Type@AV Event@AV

Seg. Event Seg. Event Seg. Event Seg. Event Seg. Event
0.05 62.7 56.9 63.9 60.8 59.7 53.9 62.1 57.3 60.5 55.5
0.1 65.9 57.3 66.7 64.3 61.9 54.3 64.8 59.9 63.7 57.9
0.2 63.1 57.3 64.1 60.5 59.9 54.3 62.3 57.0 60.8 54.7
0.3 58.3 51.9 61.2 56.5 57.6 52.2 59.0 53.6 56.4 49.9

pseudo-labels, which does not provide stronger constraints
on the segment-level labels. Also, PL methods, in general,
may not help, as the traditional approach of directly using
model predictions as ground truth was not effective (Tab.2
of the main paper). Thus, it is not PL per se that works- how
these labels are obtained and utilized is paramount.
Analysis of τ . A smaller temperature τ in Eq. 10 of the
main paper gives a more concentrated distribution, while a
larger one makes it more uniform. We experiment with dif-
ferent values while generating soft pseudo labels in Tab. 3.
Up to a point, performance improves on decreasing τ and
is best for τ = 0.1. We also find that soft labeling with
a small temperature τ = 0.05 performs similarly to hard
labeling (see Base+PPLH, Tab. 2 of main paper), which
supports intuition.
Effect of Momentum Encoder. Features extracted from
the momentum encoder are used for prototype feature gen-
eration, as described in Sec. 4 of the main paper. We ex-

Table 4. Effect of momentum encoder.

EMA Segment-Level Event-Level
A V AV Type Event A V AV Type Event

W/out 64.7 66.5 60.1 63.8 63.1 56.8 63.9 52.6 58.2 56.4
With 65.9 66.7 61.9 64.8 63.7 57.3 64.3 54.3 59.9 57.9

periment with and without a momentum encoder, and the
results are reported in Table 4. Here, we can observe that a
momentum-encoder-based setup improves performance.
Failure cases: Expanding on limitations from Sec.7, we
show two failure cases in Figure 1 (highlighted in red) be-
low (zoom in for a better view). As our method relies on
feature similarity for pseudo labeling, here it resulted in one
false positive (in frame-2 of both videos) as it is very similar
in appearance to its neighboring frame.

3. Results on Weakly-Supervised Temporal Ac-
tion Localization task

We experiment on other weakly-supervised event localiza-
tion tasks to validate the efficacy of the proposed approach.
Here, we conduct a set of preliminary experiments on the
Weakly-Supervised Temporal Action Localization (TAL)
task. We perform preliminary experiments on the Temporal
Action Localization (TAL) that aims to localize the start and
end timestamps of action instances and recognize their cate-
gories simultaneously in untrimmed videos. Here, the input
consists of two modalities - RGB and flow. RGB frames
are sensitive to the scene content, whereas flow modality is
appearance invariant and more sensitive to the motion. We
experiment with the THUMOS14 dataset [5], which con-
sists of videos with 100’s of frames belonging to 20 ac-



Figure 1. Failure cases of our method on two videos. Zoom in for a better view.

Table 5. Results on Temporal Action Localization task on THUMOS14 dataset [5]. The best and second-best results are shown in bold
and underline, respectively.

Method IoU AVG
0.1 0.2 0.3 0.4 0.5 0.6 0.7 [0.1:0.5] [0.3:0.7] [0.1:0.7]

Wanget al. [16] 44.4 37.7 28.2 21.1 13.7 - - 20.6 - -
W-TALC [11] 55.2 49.6 40.1 31.1 22.8 - 7.6 39.8 - -
EM-MIL [9] 59.1 52.7 45.5 36.8 30.5 22.7 16.4 44.9 30.4 37.7
Nguyen et al.[10] 60.4 56 46.6 37.5 26.8 17.6 9 45.5 27.5 36.3
HAM-Net [6] 65.4 59 50.3 41.1 31 20.7 11.1 49.4 30.9 39.8
FTCL [2] 69.6 63.4 55.2 45.2 35.6 23.7 12.2 53.8 34.4 43.6
UGCT [18] 69.2 62.9 55.5 46.5 35.9 23.8 11.4 54.0 34.6 43.6
DCC [7] 69.0 63.8 55.9 45.9 35.7 24.3 13.7 54.1 35.1 44.0
DGCNN [13] 66.3 59.9 52.3 43.2 32.8 22.1 13.1 50.9 32.7 41.3
Li et al. [8] 69.7 64.5 58.1 49.9 39.6 27.3 14.2 56.3 37.8 46.1
Huang et al. [4] 71.3 65.3 55.8 47.5 38.2 25.4 12.5 55.6 35.9 45.1
ASM-Loc [3] 71.2 65.5 57.1 46.8 36.6 25.2 13.4 55.4 35.8 45.1
DELU [1] 71.5 66.2 56.5 47.7 40.5 27.2 15.3 56.5 37.4 46.4
nPP (Ours) 72.7 66.9 57.9 46.9 37.4 26.8 20.1 56.4 37.8 46.9

tion categories. The video length varies significantly from a
few seconds to minutes. The duration of an action instance
also has a large variance, from shorter than one second to
several minutes. We adopt the same architecture design as
HAN [14] for this task.

We report the results for this setup in Table 5. We eval-
uate in terms of mean Average Precision (mAP) with dif-
ferent temporal Intersection over Union (tIoU) thresholds,
which is denoted as mAP@α where α is the threshold. Our
model, trained with our proposed approach from Sec. 4 of
the main paper, achieves better or comparable performance
than the current state-of-the-art model DELU [1] for tIOU
of 0.1, 0.2, 0.3, 0.4. Our model also shows more significant
improvements at high threshold metrics tIoU=0.7, which
implies that our action proposals are more complete.
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