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In this supplementary document, we provide more im-
plementation details and quantitative results. Additionally,
we describe our GUI in detail and provide additional details
for our user study.

1. Additional Implementation Details

In this section, we present more information on the network
architecture of LAENeRF.

Figure 1. Network architecture for LAENeRF. Blue components
indicate trainable parameters and the input for the weight network
is padded with ones.

1.1. Network Architecture

In Fig. 1, we show the network architecture for LAENeRF.
As discussed in our main material, our module is NeRF-
like: The sizes of the hash grid and linear layers as well
as the spherical harmonics encoding are used similarly in
iNGP [11]. However, instead of two subsequent MLPs pre-
dicting density and color, we split our model and evaluate
the weight and the offset network concurrently.

1.2. Removal of Base Color Palettes

As indicated in the main material, we start with NP̂ = 8
base colors, which are initialized according to a uniform
distribution, i.e. P̂ ∼ U [0, 1). Because 8 color palettes are
usually only required when we want to obtain smooth tran-
sitions during stylization, we remove color palettes which
do not contribute significantly before the final 1500 itera-
tions. To do this, we sample 10 poses from the training

dataset and evaluate our weight network. We derive a per-
palette mean contribution, which is always between 0 and 1.
Finally, we choose a threshold of 0.025 and remove all color
palettes which contribute less, which we reflect by updating
our UI.

1.3. Geometry-Aware Stylization

To perform stylization which respects the learned geome-
try of our pre-trained NeRF, we perform depth estimation.
As we set the depth to 0 for all rays which did not inter-
sect E , we would get incorrect results when computing our
depth guidance image. Additionally, direct neighbors of
rays which did not intersect the edit grid often do not ac-
cumulate full alpha inside E , leading to incorrect predic-
tions for ζ. To remedy the aforementioned issues, we mul-
tiply ∇ζ with the accumulated alpha inside the edit grid Tα,
for both pixels involved in the computation and their direct
neighbors:

(∇ζ)i,j = (∇ζ)i,j ·

 j+2∏
y=j−1

(Tα)i,y,

i+2∏
z=i−1

(Tα)z,j

 .

(1)

1.4. Modifications to our Framework

We include the following modifications to torch-ngp [14]
to improve reconstruction for real-world scenes, following
PaletteNeRF [5]. By default, the background color is as-
sumed to be white for real-world scenes — iNGP might
cheat with this static background color by not accumulat-
ing full α along a ray. We use a random background color
during training, which leads to better depth estimates and
a sparser occupancy grid. In addition, we mark grid cells
between each camera and its corresponding near plane as
non-trainable.

2. Ablation Studies
In this section, we provide additional analysis for the indi-
vidual components of LAENeRF. In particular, we focus



on the proposed losses for stylization and regularization of
the color palette.

2.1. Color Palette Regularization

To measure the fidelity of the learned color palette P̂ quan-
titatively, we adopt the metrics from PaletteNeRF [5] and
measure sparsity with

Lsp =

∑NP̂
i=1 ŵi∑NP̂
i=1 ŵ

2
i

− 1. (2)

In addition, we measure the total variation of the per-palette
weight images ŵi. We present the metrics in Tab. 1, where
we recolored/stylized the shovel of the bulldozer in the Lego
scene. Not using Loffset causes extreme solutions, evidenced
by Lsp and the non-intuitive recoloring in Fig. 2. Not using
Lweight extracts intuitive palettes but uses more base colors
and results in high values for Lsp. LAENeRF achieves the
best sparsity and requires the fewest base colors.

Method
Stylization Recoloring

NP̂ Lsp ↓ TV ↓ NP̂ Lsp ↓ TV ↓

w/o Loffset 8 6.046 0.005 8 6.304 0.005
w/o Lweight 8 3.033 0.026 8 2.375 0.042

LAENeRF 6 2.129 0.029 5 0.859 0.107

Table 1. Quantitative Evaluation of our proposed color palette reg-
ularization. Our full model achieves the best metrics for sparsity
and uses the fewest base colors.

Figure 2. Ablation study on the effect of Loffset. Without this loss
term, our model suffers from incorrect palette reconstruction and
highly non-intuitive recoloring.

2.2. Geometry-Aware Stylization Losses

Naı̈vely applying 2D style transfer losses often results in re-
moval of smaller structure, e.g. the black rubber bands in the
Lego scene disappear to obtain a more coherent stylization.
We demonstrate the effectiveness of our proposed counter-
measures in Fig. 3. As can be seen, LAENeRF retains
small structures well during stylization compared to only

using LTV and the naı̈ve approach without any geometry-
conditioned losses. When stylizing, we additionally train
LAENeRF without Lstyle,Loffset,LTV for the first 1000 iter-
ations, resulting in a well-initialized palette P̂ .

Figure 3. Ablation study on the effectiveness of our proposed
losses for 3D-aware stylization. Our full model retains the most
detail during stylization.

2.3. View-Consistency

In addition to our experiments in the main paper, we evalu-
ate a view-consistency metric from SNeRF [12], which is a
generalization of Lai et al. [6] to the NeRF setting. Follow-
ing SNeRF, we estimate the optical flow using RAFT [15]
and use the occlusion detection method from Ruder et
al. [13] to derive an occlusion mask O. Importantly, we
compute the optical flow on a video sequence rendered from
a pre-trained NeRF. Then, we compute the MSE between
the warped view V̄i+δ and the rendered view Vi+δ using

Ewarp(Vi+δ, V̄i+δ) =
1

|O|
∥∥V̄i+δ − Vi+δ

∥∥2
2
. (3)

In addition, we also measure LPIPS [16] between V̄i+δ and
Vi+δ , following StyleRF [8]. We show our results in Tab. 2,
where we analyzed 6 video sequences for stylization and
recoloring. We evaluate short-range consistency (δ = 1)
and long-range consistency (δ = 7). LAENeRF outper-
forms Ref-NPR [17] for all metrics. PaletteNeRF [5] with
semantic features achieves slightly better results for MSE,
but performs worse for LPIPS. These quantitative results
align with the results for our user study.



Stylization Consistency

Short-Range Long-Range

MSE (↓) LPIPS (↓) MSE (↓) LPIPS (↓)

LAENeRF 0.0252 0.0650 0.1932 0.2253
Ref-NPR 0.0264 0.0722 0.1973 0.2482

Recoloring Consistency

Short-Range Long-Range

MSE (↓) LPIPS (↓) MSE (↓) LPIPS (↓)

LAENeRF 0.0167 0.0587 0.0934 0.2063
PaletteNeRF 0.0164 0.0634 0.0925 0.2080
(semantic)

Table 2. View-Consistency comparison of our method,
Ref-NPR [17] and PaletteNeRF [5] with semantic guidance. We
measure short-range consistency (δ = 1) and long-range consis-
tency (δ = 7).

3. Additional User Study Details
We conduct our user study for a comparison with state-of-
the-art methods for local recoloring and local style transfer
in scenes represented by NeRFs. We conduct the study on
an iPad 9th Gen with a 10.2” display. All images and videos
used for our user study are included in the supplementary
material.

Images: Local Recoloring. For local recoloring, we
select scenes from the LLFF dataset [9] (Flower,
Horns, Fortress, Orchids, Trex) and the mip-NeRF 360
dataset [1] (Kitchen, Bonsai, Room) and compare against
PaletteNeRF [5] with semantic guidance. For the per-image
comparisons, we prepare 11 different recolorings, where we
tried to align the results as much as possible for a fair com-
parison. For each pair of images (one from our method, one
from PaletteNeRF), the user is shown the reference test set
image, the region we want to recolor and a color change.
We randomize the order in which we present the different
conditions. Users were instructed to choose the image they
prefer (a, b, or no-preference) based on background arte-
facts, image quality and personal preference.

Images: Local Stylization. For local stylization, we se-
lect scenes from the LLFF dataset [9] (Flower, Horns,
Trex) and the NeRF-Synthetic dataset [10] (Lego, Hotdog,
Chair, Drums) and compare against Ref-NPR [17]. For the
per-image comparison, we prepare 9 different stylizations,
where we tried to align the results as much as possible for a
fair comparison. Instead of showing the user a color change,
we now show the user the style image s. The images for
Ref-NPR were generated leveraging AdaIN [2], as shown
in Fig. 4. The testing modality is identical to local recol-

oring, however, users were also instructed to consider the
transfer of style from the given style image s to the selected
region.

Videos. In addition to images, users were also shown
videos of recolorings and stylizations. For this modality,
we did not provide a specified region, target color or style
images. Users were instead instructed to select their pre-
ferred video based on (1) visual appearance and (2) view-
consistency.

Participant Details. Of the 31 participants of our user
study, 58% had at least some prior experience with NeRFs.
In addition, 29% used a visual aid during the user study.

Statistical Evaluation. We compute the Wilcoxon signed
rank test to determine whether there is statistical signif-
icance in the preference for one or the other method.
All preference scores indicate a significant preference for
LAENeRF with recoloring (Z = 8850.0; p < 0.0001),
stylization (Z = 5000.0; p < 0.0001), video recolor-
ing (Z = 1872.5; p < 0.0005), and video stylization
(Z = 1750.0; p < 0.005). The view consistency scores
indicate a preference for our method for stylization (Z =
1232.0; p < 0.001), but no significant difference for recol-
oring (Z = 1890.0; p > 0.5).

4. GUI

LAENeRF incorporates a GUI building on [3, 14] for real-
time, interactive appearance editing of NeRFs. Here, we
present several key components of our user interface.

4.1. Region Selection and Growing

We provide an intuitive region selection process, based on
NeRFShop [3]. First, the user scribbles on the image ren-
dered from the current camera pose in our real-time viewer.
For each selected ray, we perform raymarching and map the
estimated ray termination to a the nearest voxel, which we
set in E , representing our initial selection. Next, the ini-
tial selection can be extended with region growing, where
the user controls growing by the number of voxels which
we pop from our growing queue per-iteration and the to-
tal number of iterations. Our GUI shows the selection af-
ter each region growing step. We can optionally create a
growing grid G from our selection to model smooth transi-
tions. Further, we incorporate binary operations with a sec-
ond grid for more intuitive addition and deletion of selected
voxels. Due to the region growing procedure and easy dele-
tion of voxels with a second grid and binary operations, our
method is quite insensitive to the user scribble provided as
input. The complete workflow can be seen in Fig. 5.



Figure 4. Generation of locally stylized reference images for Ref-NPR [17] using AdaIN [2] and LAENeRF’s blending weights.

Figure 5. Region selection with our interactive GUI. The user first
clicks on the screen (shown as red squares). For each selected ray,
we compute the estimated ray termination and map it to the nearest
cell in E . Finally, this initial selection can be extended with region
growing (2 iterations shown here).

4.2. Style Image Selection

Figure 6. GUI interface for style image selection.

Our LAENeRF module requires style images s ∈
R256×256×3 for stylization. To enhance usability of our ap-
proach and to support arbitrary style images, we provide
an intuitive GUI for style image selection. As can be seen
in Fig. 6, our GUI supports zooming and cropping arbitrary
images to the required size.

4.3. More Palette Control

To provide users with more control over the stylized/recol-
ored region, we enable a linear transformation of the learned

weights ŵ. To this end, we introduce palette weights
wP̂ ∈ RNP̂ and palette biases bP̂ ∈ [−1, 1]NP̂ , which
transform the weights according to

ŵ = min(ŵ ·wP̂ + bP̂ , 0),

ŵ =
ŵ

1T ŵ
.

(4)

We initialize wP̂ = 1, bP̂ = 0 and let the user guide these
parameters after LAENeRF is fully-trained, as can be seen
in Fig. 7.

Figure 7. Demonstration of user-guided modifications to ŵ.
We enable modification of stylized regions by changing the impor-
tance of individual base colors P̂i via modification of wP̂ , bP̂ .

4.4. Preview Mode & GUI demonstration

To enable interactive recoloring and stylization, our ap-
proach supports real-time rendering during training of our
LAENeRF module. After the training dataset has been ex-
tracted, which takes ∼ 15 seconds depending on the dataset,
users can watch our neural module converge. As we only
handle views of the training dataset during optimization,
this efficient dataset extraction results in fast convergence.

To render novel views during training, enabling interac-
tive previews, we query ΘNeRF to obtain the estimated ray
termination xterm and Tα, as we do during training dataset
extraction. If Tα > 0.5, we use xterm as input to LAENeRF
and output the rendered image. Consequently, due to the
fast stylization process, users have the ability to stop train-
ing after few seconds and choose another style image if they
find the result unappealing.



LAENeRF PaletteNeRF [5] PaletteNeRF [5]
(Semantic)

Figure 8. Example of Color Edits for the LLFF dataset [9] for
our method and PaletteNeRF [5].

4.5. Detailed Time Comparisons

We provide a more detailed analysis of the time comparison
to PaletteNeRF [5] in Tab. 3. As can be seen, LAENeRF
performs the recoloring task much faster, although the same
NeRF backbone is used.

PaletteNeRF

Semantic Train Extract Train Total
Features NeRF Palette PaletteNeRF

90s 153s 10s 572s 815s

LAENeRF

Train Edit Train Distill Fine-Tune Total
NeRF Dataset LAENeRF Dataset NeRF

153s 16s 133s 32s 129s 463s

Table 3. Detailed timing comparison of our method and
PaletteNeRF [5].

5. Per Scene Results for Quantitative Evalua-
tion

For a better reasoning behind the quantitative results in the
main paper and to facilitate more research in the area of
local appearance editing, we report per scene results for re-
coloring and stylization.

5.1. LLFF Recoloring

For the LLFF dataset [9], we show our per-recoloring re-
sults in Tab. 5. All masks were provided to us by the
authors of ICE-NeRF [7]. For our color edits, we also
include substantial recolorings, as can be seen in Fig. 8.
PaletteNeRF [5] requires changing all color palettes for this
specific example due to their decomposition, which intro-
duces background artefacts, even when semantic features
are used for guidance. Our approach geometrically seg-
ments the region in 3D, leading to good recoloring results
without introducing significant artefacts in the background.

5.2. mip-NeRF 360 Recoloring

For the mip-NeRF 360 dataset [1], we report per-recoloring
results in Tab. 6. We measure MSE in the background of the

selected region, with masks extracted using Segment Any-
thing [4] describing the selected object. We obtain 14 masks
for test scenes of the Bonsai scene, 32 masks for the Kitchen
scene and 18 masks for the Room scene. We show some ex-
amples of the extracted masks in Fig. 9.

Figure 9. Foreground masks for the mip-NeRF 360 dataset [1].
We lowered brightness and saturation and additionally blurred the
background using the masks.

5.3. Local Stylization

For local stylization, we report per scene results in Tab. 4.
As can be seen, our method outperforms Ref-NPR [17] for
every scene.

Method NeRF-Synthetic [10]

Chair Drums Lego Average

Ref-NPR [17] 0.0357 0.0808 0.0233 0.0466
LAENeRF 0.0037 0.0154 0.0021 0.0071

LLFF [9]

Horns Flower Trex Average

Ref-NPR [17] 0.0075 0.0079 0.0064 0.0073
LAENeRF 0.0024 0.0026 0.0025 0.0025

Table 4. MSE (↓) in the background per scene for local styliza-
tion for our method and Ref-NPR [17].
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