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7. Experimental Details
This section extends our Section 4 in the original paper by
describing the datasets and evaluation metrics, followed by
additional experimental results.

7.1. Datasets

To evaluate the performance of our EMCAD decoder, we
carry out experiments across 12 datasets that belong to six
medical image segmentation tasks, as described next.
Polyp segmentation: We use five polyp segmentation
datasets: Kvasir [29] (1,000 images), ClinicDB [3] (612 im-
ages), ColonDB [51] (379 images), ETIS [51] (196 images),
and BKAI [40] (1,000 images). These datasets contain im-
ages from different imaging centers/clinics, having greater
diversity in image nature as well as size and shape of polyps.
Abdomen organ segmentation: We use the Synapse
multi-organ dataset1 for abdomen organ segmentation. This
dataset contains 30 abdominal CT scans which have 3,779
axial contrast-enhanced slices. Each CT scan has 85-198
slices of 512 × 512 pixels. Following TransUNet [8], we
use the same 18 scans for training (2,212 axial slices) and
12 scans for validation. We segment only eight abdominal
organs, namely aorta, gallbladder (GB), left kidney (KL),
right kidney (KR), liver, pancreas (PC), spleen (SP), and
stomach (SM).
Cardiac organ segmentation: We use ACDC dataset2

for cardiac organ segmentation. It contains 100 cardiac
MRI scans having three sub-organs, namely right ventricle
(RV), myocardium (Myo), and left ventricle (LV). Follow-
ing TransUNet [8], we use 70 cases (1,930 axial slices) for
training, 10 for validation, and 20 for testing.
Skin lesion segmentation: We use ISIC17 [15] (2,000
training, 150 validation, and 600 testing images) and
ISIC18 [14] (2,594 images) for skin lesion segmentation.
Breast cancer segmentation: We use BUSI [1] dataset for
breast cancer segmentation. Following [50], we use 647
(437 benign and 210 malignant) images from this dataset.
Cell nuclei/structure segmentation: We use the DSB18
[4] (670 images) and EM [6] (30 images) datasets of bio-
logical imaging for cell nuclei/structure segmentation.

We use a train-val-test split of 80:10:10 in ClinicDB,
Kvasir, ColonDB, ETIS, BKAI, ISIC18, DSB18, EM, and
BUSI datasets. For ISIC17, we use the official train-val-test
sets provided by the competition organizer.

1https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
2https://www.creatis.insa-lyon.fr/Challenge/acdc/

7.2. Evaluation metrics

We use the DICE score to evaluate performance on all
the datasets. However, we also use 95% Hausdorff Dis-
tance (HD95) and mIoU as additional evaluation metrics
for Synapse multi-organ segmentation. The DICE score
DSC(Y, P ), IoU(Y, P ), and HD95 distance DH(Y, P ) are
calculated using Equations 12, 13, and 14, respectively:

DSC(Y, P ) =
2× |Y ∩ P |
|Y |+ |P |

× 100 (12)

IoU(Y, P ) =
|Y ∩ P |
|Y ∪ P |

× 100 (13)

DH(Y, P ) = max{max
y∈Y

min
p∈P

d(y, p), {max
p∈P

min
y∈Y

d(y, p)} (14)

where Y and P are the ground truth and predicted segmen-
tation map, respectively.

7.3. Qualitative results

This subsection describes the qualitative results of differ-
ent methods including our EMCAD. From, the qualitative
results on Synapse Multi-organ dataset in Figure 4, we can
see that most of the methods face challenges segmenting the
left kidney (orange) and part of the pancreas (pink). How-
ever, our PVT-EMCAD-B0 (Figure 4g) and PVT-EMCAD-
B2 (Figure 4h) can segment those organs more accurately
(see red rectangular box) with significantly lower computa-
tional costs. Similarly, qualitative results of polyp segmen-
tation on a representative image from ClinicDB dataset in
Figure 5 show that predicted segmentation outputs of our
PVT-EMCAD-B0 (Figure 5p) and PVT-EMCAD-B2 (Fig-
ure 5q) have strong overlaps with the GroundTruth mask
(Figure 5r), while existing SOTA methods exhibit false seg-
mentation of polyp (see red rectangular box).

8. Additional Ablation Study
This section further elaborates on Section 5 by detailing five
additional ablation studies related to our architectural de-
sign and experimental setup.

8.1. Parallel vs. sequential depth-wise convolution

We have conducted another set of experiments to decide
whether we use multi-scale depth-wise convolutions in par-
allel or sequential. Table 7 presents the results of these ex-
periments which show that there is no significant impact of

https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
https://www.creatis.insa-lyon.fr/Challenge/acdc/


Figure 4. Qualitative results of multi-organ segmentation on Synapse Multi-organ dataset. The red rectangular box highlights incorrectly
segmented organs by SOTA methods.

Figure 5. Qualitative results of polyp segmentation. The red rectangular box highlights incorrectly segmented polyps by SOTA methods.

Architectures Depth-wise convolutions Synapse ClinicDB

PVT-EMCAD-B0 Sequential 81.82±0.3 94.57±0.2
PVT-EMCAD-B0 Parallel 81.97±0.2 94.60±0.2

PVT-EMCAD-B2 Sequential 83.54±0.3 95.15±0.3
PVT-EMCAD-B2 Parallel 83.63±0.2 95.21±0.2

Table 7. Results of parallel and sequential depth-wise convolution
in MSDC on Synapse multi-organ and ClinicDB datasets. All re-
sults are averaged over five runs. Best results are in bold.

the arrangements though the parallel convolutions provide a
slightly improved performance (0.03% to 0.15%). We also
observe higher standard deviations among runs in the case
of sequential convolutions. Hence, in all our experiments,
we use multi-scale depth-wise convolutions in parallel.

Architectures Module Params(K) FLOPs(M) Synapse

PVT-EMCAD-B0 AG 31.62 15.91 81.74
PVT-EMCAD-B0 LGAG 5.51 5.24 81.97

PVT-EMCAD-B2 AG 124.68 61.68 83.51
PVT-EMCAD-B2 LGAG 11.01 10.47 83.63

Table 8. LGAG vs. AG (Attention gate) [41] on Synapse multi-
organ dataset. The total #Params and #FLOPs of three AG/LGAGs
in our decoder are reported for an input resolution of 256 × 256.
All results are averaged over five runs. Best results are in bold.

8.2. Effectiveness of our large-kernel grouped at-
tention gate (LGAG) over attention gate (AG)

Table 8 presents experimental results of EMCAD with orig-
inal AG [41] and our LGAG. We can conclude that our
LGAG achieves better DICE scores with significant re-



Architectures Pretrain Average Aorta GB KL KR Liver PC SP SMDICE↑ HD95↓ mIoU↑
PVT-EMCAD-B0 No 77.47 19.93 66.72 81.96 69.41 83.88 74.82 93.45 54.41 88.97 72.85
PVT-EMCAD-B0 Yes 81.97 17.39 72.64 87.21 66.62 87.48 83.96 94.57 62.00 92.66 81.22

PVT-EMCAD-B2 No 80.18 18.83 70.21 85.98 68.10 84.62 79.93 93.96 61.61 90.99 76.23
PVT-EMCAD-B2 Yes 83.63 15.68 74.65 88.14 68.87 88.08 84.10 95.26 68.51 92.17 83.92

Table 9. Effect of transfer learning from ImageNet pre-trained weights on Synapse multi-organ dataset. ↑ (↓) denotes the higher (lower)
the better. All results are averaged over five runs. Best results are in bold.

DS EM BUSI Clinic Kvasir ISIC18 Synapse ACDC
No 95.74 79.64 94.96 92.51 90.74 82.03 92.08
Yes 95.53 80.25 95.21 92.75 90.96 83.63 92.12

Table 10. Effect of deep supervision (DS). PVT-EMCAD-B2 with
DS achieves slightly better DICE scores in 6 out of 7 datasets.

Architectures Resolutions FLOPs(G) DICE

PVT-EMCAD-B0 224× 224 0.64 81.97
PVT-EMCAD-B0 256× 256 0.84 82.63
PVT-EMCAD-B0 384× 384 1.89 84.81
PVT-EMCAD-B0 512× 512 3.36 85.52

PVT-EMCAD-B2 224× 224 4.29 83.63
PVT-EMCAD-B2 256× 256 5.60 84.47
PVT-EMCAD-B2 384× 384 12.59 85.78
PVT-EMCAD-B2 512× 512 22.39 86.53

Table 11. Effect of input resolutions on Synapse multi-organ
dataset. All results are averaged over five runs.

ductions in #Params (82.57% for PVT-EMCAD-B0 and
91.17% for PVT-EMCAD-B2) and #FLOPs (67.06% for
PVT-EMCAD-B0 and 83.03% for PVT-EMCAD-B2) than
AG. The reduction in #Params and #FLOPs is bigger for
the larger models. Therefore, our LGAG demonstrates im-
proved scalability with models that have a greater number
of channels, yielding enhanced DICE scores.

8.3. Effect of transfer learning from ImageNet pre-
trained weights

We conduct experiments on the Synapse multi-organ dataset
to show the effect of transfer learning from the ImageNet
pre-trained encoder. Table 9 reports the results of these ex-
periments which show that transfer learning from ImageNet
pre-trained PVT-v2 encoders significantly boosts the per-
formance. Specifically, for PVT-EMCAD-B0, the DICE,
mIoU, and HD95 scores are improved by 4.5%, 5.92%,
and 2.54, respectively. Likewise, for PVT-EMCAD-B2, the
DICE, mIoU, and HD95 scores are improved by 3.45%,
4.44%, and 3.15, respectively. We can also conclude that
transfer learning has a comparatively greater impact on

the smaller PVT-EMCAD-B0 model than the larger PVT-
EMCAD-B2 model. For individual organs, transfer learn-
ing significantly boosts the performance of all organ seg-
mentation, except the Gallbladder (GB).

8.4. Effect of deep supervision

We have conducted an ablation study that drops the Deep
Supervision (DS). Results of our PVT-EMCAD-B2 on
seven datasets are given in Table 10. Our PVT-EMCAD-
B2 with DS achieves slightly better DICE scores in six out
of seven datasets. Among all the datasets, the DS has the
largest impact on the Synapse Multi-organ dataset.

8.5. Effect of input resolutions

Table 11 presents the results of our PVT-EMCAD-B0 and
PVT-EMCAD-B2 architectures with different input resolu-
tions. From this table, it is evident that the DICE scores im-
prove with the increase in input resolution. However, these
improvements in DICE score come with the increment in
#FLOPs. Our PVT-EMCAD-B0 achieves an 85.52% DICE
score with only 3.36G FLOPs when using 512 × 512 in-
puts. On the other hand, our PVT-EMCAD-B2 achieves
the best DICE score (86.53%) with 22.39G FLOPs when
using 512 × 512 inputs. We also observe that our PVT-
EMCAD-B2 with 5.60G FLOPs when using 256× 256 in-
puts shows a 1.05% lower DICE score than PVT-EMCAD-
B0 with 3.36G FLOPs. Therefore, we can conclude that
PVT-EMCAD-B0 is more suitable for larger input resolu-
tions than PVT-EMCAD-B2.
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