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1. Constraint Specification API
1.1. Design Goals & Related Work

Although Infinigen Indoors provides default settings to gen-
erate data in one click, we also intend for it to serve as a
general-purpose framework for creating customized indoor

datasets of any variety. This extends to creating indoor en-
vironments besides just residential homes, such as public
or commercial spaces. This also includes creating data for
user-specific versions of these spaces according to known
requirements, for example, creating warehouses or grocery
stores with structures that follow the design guidelines of
some specific company. We also expect that users might
have similarly detailed requirements about smaller objects
in a scene, like the organization of ornaments on a shelf, or
appliances in a commercial kitchen. These needs motivate
several attributes in which our solver system differs from
and improves over prior work:
No pre-arranged scenes expected. Our system assumes that
most users do not already have a collection of pre-arranged
3D scenes (e.g. annotated 3D scans or artist-arranged scenes)
matching their specific use case.

This is in contrast to prior arrangement solvers [5, 7, 20],
which tune many low-level distributions against pre-arranged
3D scene datasets such as [5, 7]. To extend such a system to
a new domain, the intended workflow would be to manually
arrange or to scan-and-annotate many indoor scenes, then ex-
tract regularities to interpolate into new room arrangements.
Of course, one could manually specify coefficients in any
system, but systems designed around pre-arranged scenes
invariably have lower-level, less-interpretable constraints,
such as full probability distributions or dense pairwise poten-
tials. Automatically tuning coefficients is possible under our
framework, but is not required, and we expect fewer scenes
due to the reduced number of free variables.

This assumption - no pre-arranged input data - also main-
tains Infinigen Indoors’s guarantee of 100% customizability
and that no hidden biases are possible, since everything is
derived from open-source code. A system tuned against a
fixed dataset would inherit any bias or unexpected properties
from that dataset.
High-level constraints. To make this primarily user-driven
workflow feasible, our constraint language provides a higher-
level (more abstract; less verbose) API than prior systems.
As explained in Sec. 1.2, we allow rules to be specified
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Figure 1. Random, non-cherry-picked sample of procedurally generated residential homes (Part 1 of 2)



Figure 2. Random, non-cherry-picked sample of procedurally generated residential homes (Part 2 of 2)



Figure 3. Constraint Program for whole residential homes. Left shows hard constraints, right shows continous objective scores. Our system
flexibly composes API calls to apply any constraint to any class of object describable within the scene.

over abstract classes of objects (”furniture”, ”seating”, ”din-
ingchair”), rather than for specific meshes or furniture cate-
gories. Whereas other systems directly specify distributions
over geometric quantities (e.g. the distance/angle to wall dis-
tribution between every unique furniture type [20]), we allow
these to distributions to arise from competing ergonomic ob-
jectives (dining tables are generally as far away from walls as
possible, but are forced closer in more cramped apartments
due to competition from other furniture)

General-purpose, extensible constraint language. We
aim for our system to cover all possible indoor arrangement
problems, with the whole vision community contributing
useful constraint programs or solver improvements as high-
level python code.

Despite this, our current set of operations likely does
not cover all possible use cases, so we have designed our
system to be extensible with arbitrary additional operations.
All existing operations are implemented as simple Numpy,

Trimesh or Blender-API functions, and any control flow or
hard-constraints operations can optionally be easily added to
our constraint-graph reasoning utilities as explained in Sec.
5.2.

1.2. API Description

with semantics (also notated as operator square-
brackets for brevity) extracts the subset of a set of objects
that satisfies a semantic predicate, e.g. ”extract the subset
of rooms which are dining-rooms” or ”extract the subset of
furniture objects which are shelving”. The hierarchy of these
predicates is defined by asset creators, or can be reconfigured
by constraint program writers if they intend to use an object
for an unusual purpose. Using hierarchical classes for this
filtering operation allows every constraint to apply to the
most broad class of objects possible, to avoid rewriting or
restating constraints for objects that fulfill a similar function.



Optimization objectives based on... Our API Function Example Usage (Described in Natural Language)

Objects with (abstract) semantics with semantics a.k.a. [ ] Scope a constraint to a hierarchical class e.g. shelves, storage, all furniture, or all objects
Objects related to other objects related to Cooking pots go in the center when on tables, but can go anywhere on a countertop.
Objects on arbitrary surfaces SupportedBy Multi-story homes, decorations on shelves, countertops, fridges
Whether objects overhang StableAgainst Glassware should be secure, paintings cant overhang walls
Non-convex object shapes Yes, procedural placeholders Objects go inside shelves, chairs tuck under table

Variable quantity of objects count Allow between 0 and 3 sofas in a living-room, but as many as possible
Size of objects area, volume Generate the biggest possible TV & Sofa that fits well
Pair-wise distances min distance Place dining tables & ceiling lights far from walls
Pair-wise angle difference angle alignment Align tables to parallel to the nearest wall
Symmetry around an object rotational asymmetry Chairs should be rotationally symmetric when placed around circular tables
Symmetry across a plane reflection asymmetry Bed-side tables should be symmetric on either side of a bed
Objects facing other objects focus score Sofas should face TVs or paintings
Object accessibility accessibility cost Leave space in front of sofas / appliances
Empty space on a surface freespace 2d Leave some space leftover in room / on countertop

Arbitrary arithmetic / nonlinearities + - * / pow hinge Encourage certain ratio of ceiling-lights to room-area
Boolean comparisons / logic == < <= and in range Ensure there are 2 to 6 chairs for every table

every object must satisfy a predicate all Every bookcase must have ≥ 10 books
sum/mean across specific objects mean sum Compute average distance to wall over many objects, rather than minimum

Table 1. Capabilities covered by our API. Please see Sec. 2 and 3 for example programs, and surrounding text for full descriptions. For our
API, functions can be composed arbitrarily, e.g. scene.with semantics(...).related to(...).count().hinge(...)
to create a nonlinear objective w.r.t. number of objects in a certain context. For other works, we cite any related work that fulfills each
capability in any capacity.

related to extracts the subset of a set of objects related
to any member of a second set of objects via some rela-
tion. The exact way in which the objects are related is user-
configurable by passing in any parameterized Relation
object from the options below (StableAgainst, SupportedBy),
which represents a predicate that can be True or False of any
pair of objects.

By combining related to with other filtering opera-
tions, the user can express constraints on arbitrarily complex
contexts such as ”maximize the number of dining chairs
against dining tables inside of rooms adjacent to kitchens”,
to encourage plenty of seating near food preparation areas,
etc.

scene retrieves the set of all objects currently in the scene.
All constraint programs are ultimately functions of the cur-
rent scene state, so this node serves as the leaf node of all
constraint program expressions (besides numeric constants).
Users rarely place constraints on scene directly. Instead,
we expect the user to first take subsets via the abovemen-
tioned operations.

StableAgainst specifies a relation using a child ob-
ject’s planar surface, a parent object’s planar surface, and
a margin between the surfaces. It checks that the child’s
surface is parallel to the parent’s, the child is not overhang-
ing, and the child’s surface is exactly at the specified margin.
A concrete example would be specifying the sofa as stable
against the floor with zero margin and stable against the wall
with a 10cm margin. Alternatively, specifying a painting to

be stable against the wall ensures that the painting does not
overhang across the edge of the wall.

SupportedBy specifies a relation using a child object’s
planar surface and a parent object’s planar surface. It means
that the child object would not fall over from the parent
object. More precisely, the surfaces are parallel against
each other with zero margins, and the centroid of the child
object is contained within the convex hull of the intersection
between the child and the parent object. The last condition
is to ensure zero torque by gravity. An example use case is a
coffee cup teetering on the table’s edge. In this case, the cup
is supported by the table, but it is not stable against it since
it is overhanging.

count returns the cardinality of a set of objects in the
scene.

area, volume returns the total area or volume of the
bounding boxes of objects in a set. We use bounding boxes
to avoid expensive calculations to compute the exact volume
of each mesh, and we find this serves as a suitable proxy
to incentivize larger assets. Area always takes over the two
largest axes of an object and is usually used for 2D objects
like paintings or rugs.

min distance calculates the minimum distance be-
tween two sets of tagged objects. For instance, the minimum
distance between the walls and the back of the couch. The
minimum distance is defined as the distance between the



closest two points on the two sub-meshes identified by the
tags.

angle alignment cost quantifies how far a group of
objects are from being angle aligned to a reference object on
the XY plane. The cost is calculated as∑

i

1− cos θi
2

where θi is the angular difference between the front-facing
normal of object i and the inward normal of the closest edge
of the reference object. The contribution of each object is in
the [0, 1] range.

An example use case is minimizing the angle alignment
cost between chairs and tables to make the chairs face the
table. Another example is using an alignment score to align
furniture to the walls in order to give the arrangement a more
grid-like shape.

rotation asymmetry gives a continuous characteri-
zation of the rotational asymmetry of a set of objects based
on [6, 21]. It measures the deviation of the set of objects
from a regular polygon with perfectly rotationally symmetric
orientations. From another perspective, it measures the ro-
tational asymmetry of a set of point-vector pairs. The score
consists of two parts and is calculated as

score =
location asymmetry + orientation asymmetry

2
.

Suppose the location of the ith object is given by x⃗i and
there are n objects. The location asymmetry is calculated as
follows:

1. Let p⃗i = x⃗i − c where c is the centroid of the objects.

2. Rotate all p⃗i so that p⃗1 is aligned with the axis.

3. Normalize p⃗i by dividing by maxi ||p⃗i||.

4. Let f⃗i be vector p⃗i rotated by −2iπ/n.

5. Compute q⃗ as the average of f⃗i.

6. Let w⃗i be vector q⃗ rotated by 2iπ/n.

7. Then, we have location asymmetry = 1
n

∑
||w⃗i− p⃗i||2.

The orientation asymmetry score follows the same steps as
the location asymmetry, but with p⃗i replaced by the frontal
plane normal of the object i.

As an example, rotational asymmetry score can be used
to encourage tableware being rotationally symmetric on the
table not only with respect to their location but also their
orientation. It can also be used to make chairs rotationally
symmetric around the table.

reflection asymmetry calculates a continuous re-
flectional asymmetry score for a set of objects relative to a
reference object. This score quantifies the deviation of ob-
jects from mirror symmetry. The process involves reflecting
each object across a plane and then comparing the original
and reflected objects. From another perspective, it quantifies
the mirror asymmetry of a set of point-vector pairs. The
asymmetry score is computed as follows:

1. Determine Reflection Plane: Identify the plane of
reflection, which can be any of the median planes of
the bounding box of the reference object.

2. Reflect Objects: The objects Oi are represented by
(p⃗i, qi) where p⃗i is the object’s location and qi is the
object’s orientation. Each object Oi is reflected across
the plane to obtain its mirror image O′

i. The reflection
of a point p⃗ is given by p⃗′ = p⃗− 2(p⃗ · N⃗plane)N⃗plane.
The reflection of an axis-angle represented orientation
θe⃗ is given by θ′e⃗′ where e⃗′ = e⃗− 2(e⃗ · N⃗plane)N⃗plane

and θ′ = −θ.

3. Bipartite Matching: A cost-minimizing bipartite
matching is performed between the set of original ob-
jects {Oi} and their reflected counterparts {O′

i} to find
the optimal pairings based on a cost matrix derived from
positional and angular deviations. We use a modified
Jonker-Volgenant algorithm for this step [2, 10].

4. Calculate Deviations:
• Positional Deviation: For each paired object
(Oi, O

′
i) = ((p⃗i, qi), (p⃗′i, q

′
i)), calculate the Eu-

clidean distance Dpos = ||p⃗i − p⃗′i||.
• Angular Deviation: Calculate the angular difference
Dang = 2arccos(|qi · q′i|), where qi and q′i are the
quaternion representations of the paired objects’ ori-
entations.

5. Weight Deviations: Each deviation is weighted by a
factor V (Oi), which is the volume of the bounding box
of Oi. The weighted deviation for each object pair is
Ddev(Oi) = V (Oi)× (Dpos +Dang).

6. Normalization: The total deviation is normalized by a
factor α, which is the average distance between objects:
α = 1

N(N−1)

∑
i̸=j ||p⃗i − p⃗′i||, where N is the number

of objects.

7. Compute Asymmetry Score: The reflectional asym-
metry score is derived as

Score = 1− 1

1 +
∑

i Ddev(Oi)/α

This reflection score is useful in contexts such as encour-
aging chairs to be symmetric around a long rectangular table,



or encouraging furniture to have mirror symmetry for visual
appeal, or encouraging paintings to be symmetrical across
the room.

accessibility cost computes how much a set of
objects B block access to a set of objects A. We offer two
versions. In the fast version, the function selects the closest
object in B to each object in A based on the centroid distance.
In the slow version, it finds the closest point on any mesh in
B to each mesh in A. The mathematical formulation can be
described as follows:
We first take the projection of a’s centroid onto its specified
plane (frontal plane by default) by

a⃗proj = a⃗c −
(
(⃗ac − f⃗p) · n⃗a

)
n⃗a

where a⃗c is the centroid of object a, f⃗p is a point on the
specified plane, and n⃗a is the normal vector of the specified
plane.
For a given object a ∈ A, we define b⃗(a) and b⃗closest pt. The
fast version defines

b⃗(a) = argmin
b∈B

∥⃗bc − a⃗proj∥

b⃗closest pt = Centroid of the selected b⃗(a)

The slow version defines

b⃗(a) = Object in B with the point closest to mesh a

b⃗closest pt = Point on mesh b⃗(a) closest to mesh a

For both fast and slow versions, the accessibility cost is
calculated as

cost =
∑
a∈A

(⃗bclosest pt − a⃗proj) · n⃗a

∥⃗bclosest pt − a⃗proj∥2
× ∥⃗b(a)d∥

where b⃗(a)d is the diagonal vector of the bounding box of
the chosen object b⃗(a). We note that the accessibility cost
increases as the blocking object gets larger, as the blocking
objects get closer, and as the blocking object is more in front
of the specified plane.

An example usage of accessibility cost is when we want
to penalize objects being directly in front of TVs, paintings,
or closets.

focus score encourages focusing a set of objects A on
an object b. It is calculated as∑

a∈A

1− n⃗a · (⃗bc − a⃗c)

2||⃗bc − a⃗c||

where n⃗a is the front facing normal of object a. The vectors
a⃗c, b⃗c denote the centroids of a and b respectively. The
contribution of each object is in the [0, 1] range.

An example use case of focus score is focusing the sofas
on the TV to encourage a more realistic layout. Another
example use case is focusing a set of seats on a round table.

freespace 2d returns the amount of 2D free space
available on a set of objects A after accounting for the space
occupied by objects B. It is calculated as∑

a∈A

µ(proj(a))−
∑
b∈B

µ(proj(b))

where proj is the projection to the XY plane and µ gives the
area of a 2D shape. An example use case is minimizing the
free space on a table to encourage placing more objects on
the table, or maximizing the free space in a living room to
make it less cluttered.

Arithmetic / non-linearities provide basic scalar arith-
metic and an implementation of the standard hinge loss func-
tion, all computed using the standard Python definitions.
The exact set of mathematical operators provided here is not
critical; our system treats scalar losses as a black box, so any
arbitrary Python math expressions are acceptable.

Boolean comparisons allow equality or inequality check-
ing between values, usually for creating hard constraints
on cardinalities or distances. When used to check the size
of a set, our system will use the constraint statement to in-
form what Addition moves are proposed as explained in
“Cardinality Bounding”.

all provides control flow logic akin to the “forall” ∀ sym-
bol as used in formal proofs. It is commonly used in con-
structing soft/hard constraints. We avoid allowing arbitrary
Python control flow (for loops, if statements, etc.) as it
makes symbolic reasoning difficult by restricting the user
to symbolic expressions. This design decision is similar to
other compute graph programming frameworks (e.g. Ten-
sorflow [1], CVXPY [4]). For example, by forcing the user
to use a symbolic ’all’ statement rather than a for loop, we
can make inferences such as ”if all chairs go near tables,
and there must be at least one chair, then there must be at
least one table”, which allows the user to write higher level
and fewer constraints, with the system deducing all logical
consequences.

Forall statements take as input a loop variable name, and
a constraint program that contains the loop variable as a leaf
node at one or more locations. During execution, the child
constraint program is substituted with the real values of the
loop variable and evaluated to obtain the various results.

mean, sum compute the standard scalar mean and sum
operations, using similar control flow logic and evaluation
substitution mechanisms as all as described above.



2. Extended Random Sample & Constraint
Code for Residential Scenes

Please inspect Figures 1 and 2 for an extended random sam-
ple of our main residential home generator (as seen previ-
ously in Figure 1 of the main paper).

These images were derived from the constraint code de-
signed for residential homes, shown in Figure 3. We have
a total number of 105 soft and hard constraints, with 19 for
dining rooms, 14 for living rooms, 9 for bathrooms, 18 for
kitchens, 16 for warehouses, and 30 designed for general
purposes. These constraints are used to cover object assign-
ments (object A goes on object B), ratios (numbers of chairs
per table, objects per shelf), stability (TV placed against wall;
objects don’t overhang unsupported), distance (plants placed
near window), and more. This initial set creates scenes that
are both visually compelling and useful for training. It is
easy to add more scene types, as little as 15 lines of code
each.

3. Extension to warehouse scenes
To show the generality of our solving system, we imple-
mented a simple constraint program that uses existing lan-
guage features to specify the high-level objectives of a ware-
house environment, with furniture on shelves and smaller
items on wooden pallets. See Fig. 4 for the full program.
Various further extensions are possible, for example indi-
cating a preference for larger objects to be placed lower or
higher on the shelves, or certain objects to be placed near the
front of the warehouse / store. We show example images in
Fig. 5, as well as a topdown view showing only the shelving
and lighting layout.

4. Floorplan Solver Details
4.1. Floor plan graph generation

We generate floor plans that have 1 to 3 floors. For each floor,
we generate a floor plan graph where individual nodes rep-
resent a room with a certain type, and each edge represents
the connectedness of two rooms it is linked to. We support
rooms of the following type: kitchen, bedroom, living-room,
closet, hallway, bathroom, garage, balcony, dining-room,
utility, staircase. hallway can mean any corridor or pas-
sage between rooms, and staircase means the room or space
where one can find the stairs.

The graph is generated by a Probabilistic Context-free
Grammar, where the graph first starts off as a single node
living-room, and gradually appends zero, one or more rooms
of certain types to the leaf nodes. The probability distribution
that we use is shown in Tab. 2 and Tab. 3. Additional Edges
are added to rooms to create a floor plan graph based on the
generated tree. Additional hallways are added and shared
among the children with the same parent. Based on the

Room parent Room children Probability

LivingRoom LivingRoom 0.1
Bedroom Cat(0, 0.3, 0.3, 0.3, 1)
Closet 0.1
Bathroom 0.4
Garage 0.4
Balcony 0.2
DiningRoom 0.8
Utility 0.2
Hallway Cat(0.5, 0.4, 0.1)

Kitchen Garage 0.1
Utility 0.2

Bedroom Bathroom 0.3
Closet 0.5

Bathroom Closet 0.2
DiningRoom Kitchen 1.0

Hallway 0.2

Table 2. Probability of the numbers of rooms PCFG produces
for each leaf node in the graph for the ground floor. Such proba-
bility is conditioned on the parent room type(Column 1) and the
children room type(Column 2). The probability(Column 3) can
either be a Bernoulli distribution (shown as the sole parameter) or
a Categorical(Cat) distribution (shown as the probability on the
number of children, starting with zero).

Room parent Room children Probability

LivingRoom Bedroom Cat(0, 0.4, 0.5, 0.2)
Closet 0.2
Bathroom 0.4
Balcony 0.4
Utility 0.2
Hallway Cat(0, 0.5, 0.5)

Bedroom Bathroom 0.3
Closet 0.5

Bathroom Closet 0.2
Balcony Utility 0.4

Hallway 0.1

Table 3. Probability of the numbers of rooms PCFG produces for
each leaf node in the graph. The annotations are similar to Tab. 2

number of floors and the current level, a porch (balcony)
or staircase may also be added to the graph. All room
plans that do not observe bathroom privacy (i.e. a bedroom
is connected to a bathroom without going through other
bedrooms) or are not planar are rejected. Based on the user
input, floor plans with an incorrect number of designated
rooms are also rejected. By default, we require all floor plan
graphs to have at least one living room and one bathroom.



Figure 4. Constraint program for warehouse scenes. In only a few high-level statements, we specify the heirarchy of allowed objects, and
competing placement objectives that give rise to an appropriate shelf and object layout for any warehouse scene.

4.2. Floor plan initialization

Based on the floor plan graph for a specific floor, we first
deduct an estimated contour area based on the sum of typical

areas of all the rooms on one floor, which can also used to
derive the width and length of the contour. To derive the
contour on one floor, we randomly bevel the corners with
a rectangular, round, or 45-degree profile that provides the



(a) Shelving Arrangement (b) Example Images

Figure 5. Warehouse scene arrangement (left) and example first-person images (right). Using only a few high-level objectives, we extend our
existing placement system and existing furniture generators to create a hardware-store-like environment.

diversity of the contour shape. Contours for floors upstairs
are either the exact same copy of the contour on its lower
floor or a subset of the contour on its lower floor.

The spaces are subdivided from the contour following
the Mondrian Process [18]. For each iteration, we randomly
select a mostly rectangular space and divide it along one
of its axes, and we repeat such division so that there are
1.5 times more blocks than are required in the floor plan
graph. All divisions apply by rounding off the division
onto a grid with size 0.5, and divisions leading to a bad
aspect ratio are rejected. We merge the spaces until there’s
the same number of spaces as in the floor plan graph, then
compute the adjacency relations of all divided spaces, where
spaces are adjacent if they share an edge of size greater or
equal to a threshold (to place doors). We randomly add a
staircase placeholder inside the contour for multistory floor
plans, which roughly indicates the location of the staircase.
The staircase placeholder ensures staircases across adjacent
floors are in the same spatial location.

Among these contour divisions, we try to find one where
the assignment of rooms suffices the floor plan graph via
adjacency relations. In addition to the adjacency relations in
the floor plan graph, we also ensure that all exterior-facing
rooms, including the bedroom, garage, and balcony, have
access to the house’s exterior. Only the divided spaces inter-
secting with the staircase placeholder can be assigned to the
staircase room. We can find a proper assignment of rooms
that satisfies the floor plan graph and other constraints via
depth-first search.

4.3. Objective function for floor plan optimization

The objective function is defined on a floor plan where spaces
are assigned to a node in the floor plan graph. The objective
is composed of twelve constraints detailed as follows:

Shortest path to entrance constraint encourages unidi-
rectional room access from the entrance. We compute the
shortest path from all nodes to the floor’s entrance, either the
front entrance for the ground floor or the staircase for rooms
upstairs. The path is computed in an axis-aligned fashion
and can only traverse connected rooms on the floor plan

graph. The amount of detour for each path is the percentage
of the path in the wrong direction of the Euclidean distance
from the entrance to that room. The objective function is
computed as squared detours summed across rooms. Denote
F as the set of all floors, ef is the entrance on floor f , and
→ is the path allowed by the adjacency between rooms:

Lsp =
∑
f∈F

∑
r∈f

(
∥ef → r∥1,direct

∥ef → r∥1
− 1

)2

Typical room area constraint encourages room of typical
area so that the spaces serve the best function. A list of the
typical area occupied by rooms is listed in Tab. 4, which is
based on a typical US household. The ideal proportion of a
room is computed as the typical area of that room divided
by the sum of all the room’s typical areas on that floor. The
objective function is computed by the difference between
a room’s ideal proportion on one floor and the room’s true
proportion on that floor, summed across rooms. For all
rooms r ∈ f , we compute its ideal area as

arear =
typical arear∑

r′∈f typical arear
areaf

A formula for the objective function is

Lta =
∑
f∈F

∑
r∈f

max

(
arear
arear

,
arear
arear

)

Room aspect ratio constraint encourages rooms of certain
types to be square. The objective function is computed as
the difference between the true aspect ratio and one, squared
and summed across rooms. Denote by Rs the rooms needed
to be square, we have

Lar =
∑
f∈F

∑
r∈f∩Rs

(
max

(
heightr
widthr

,
widthr

heightr

)
− 1

)2



Room type Typical area

Kitchen 20
Bedroom 20
LivingRoom 25
DiningRoom 20
Closet 3
Bathroom 7
Utility 3
Garage 35
Balcony 6
Hallway 6
Staircase 20

Table 4. Typical area occupied by rooms

Room convexity constraint encourages rooms to be overall
convex. The convexity of each room is computed as the ratio
between the area of the convex hull of a room and the area
of the room itself. The objective function is computed as the
squared difference between the convexity of a room and one,
summed across rooms.

Lconv =
∑
f∈F

∑
r∈f

(
areaconvex hull(r)

arear
− 1

)2

Room wall conciseness constraint encourages rooms to
have fewer boundary edges, which allows rooms to have
better-formed geometry along many iterations of perturba-
tions. The objective function is the squared difference be-
tween the number of boundary edges of a room with four
(minimal number of edges), summed across rooms.

Lconc =
∑
f∈F

∑
r∈f

(∥w ∈ wallsr∥ − 4)
2

Functional Room area constraint incentivizes the avail-
able area useful for dwellings of the people inside the house,
characterized by functional rooms. Functional rooms include
kitchens, bedrooms, living rooms, bathrooms, and dining
rooms. The objective function is computed as the proportion
of the area covered by these rooms, measured in squared
distance with one. Denote by Rf the set of functional rooms,
we have

Lfunc =
∑
f∈F

(∑
r∈f∩Rf

arear

areaf
− 1

)2

Room collinearity constraint incentivizes walls of mul-
tiple rooms to be collinear for aesthetics and construction
purposes. The objective function measures the number of

distinct X or Y coordinates for all walls of rooms across one
floor.

Lcol =
∑
f∈F

(|{x|∃r ∈ f, x the x-coords of a wall in r}|

|{y|∃r ∈ f, y the y-coords of a wall in r}|)

Narrow passages constraint limits the number of passages
in a room (including hallways) where people or furniture may
find it hard to move across. We identify a narrow passage in
a room by eroding and then buffering the 2D room contour
with a certain threshold margin. Narrow passages inside a
room are no longer present in the room contour after that
erosion-buffer operation. The objective function is measured
as the difference between the area of the room contour pre-
and post- erosion-buffer operation. An illustration of the
erosion-buffer operation can be found in Fig. 6. The formula
can be written as

Lnar =
∑
f∈F

∑
r∈f

(
arear − areaerosion-buffer(r)

)

Erode

Erode

Buffer

Buffer

a)

b)

Figure 6. Illustration of narrow passage and erosion-buffer oper-
ation. a) In rooms with no narrow passage, the room contour is
restored after the operation; b) In rooms with narrow passage, the
narrow passage disappears from the room contour after the opera-
tion.

Exterior length by room constraint encourages rooms of
certain types to cover most of the exterior walls and windows
since people would expect more views of outside in these
rooms and more privacy concerns in other rooms. The exte-
rior room types include bedrooms and balconies, denoted by
Re. The objective function is evaluated using the exterior
length covered by these rooms divided by the exterior length
covered by all rooms on that floor, measured by its squared
distance with one.



Lextr =
∑
f∈F

(∑
r∈f∩Re

∑
w∈wallsr exterior ∥w∥∑

r∈f

∑
w∈wallsr exterior ∥w∥

− 1

)2

Exterior corner by room constraint encourages the afore-
mentioned room types to cover most exterior corners, which
supposedly have better views. The objective function is mea-
sured by the percentage of corners covered by these rooms,
measured by its squared distance with one.

Lextc =
∑
f∈F

(∑
r∈f∩Re

|{c ∈ cornersr|c exterior}|∑
r∈f |{c ∈ cornersr|c exterior}|

− 1

)2

Staircase occupancy constraint encourages the room as-
signed as the staircase room to cover the staircase place-
holder space. It is measured as the percentage of staircase
placeholder space covered by the staircase room, measured
by its squared distance with one. Denote by sp the staircase
placeholder and Rs the staircase rooms, we have

Lstair occ =
∑
f∈F

 ∑
r∈f∩Rs

areasp∩r

areasp
− 1

2

Staircase IOU constraint further encourages the room as-
signed as the staircase room to be exactly the same size,
shape, and location as the staircase placeholder space. It is
measured as the IOU of the staircase placeholder with the
staircase, measured by its squared distance with one.

Lstair occ =
∑
f∈F

 ∑
r∈f∩Rs

IOUr,sp − 1

2

4.4. Floor plan optimization moves

While solving for the aforementioned constraints, we need
to design a set of moves to perturb the floor plan, which are
listed as follows and illustrated in Fig. 7:

Extruding a wall segment inwards randomly select one
wall segment of a room in the current floor plan and move it
towards the inside of the room by one grid size (0.5). Other
rooms sharing part of the wall with the selected wall will fill
up the space left by the move.

Extruding a wall segment outwards randomly select one
wall segment of a room in the current floor plan and move it
towards the outside of the room by one grid size (0.5). Other
rooms sharing part of the wall with the selected will give up
their space to the room.

Swapping the assignment for adjacent rooms randomly
select one space for a room and its neighbor and swap their
room assignment.

In all of the above moves, we reject moves that lead to a
floor plan that does not suffice the floor plan graph on that
floor. We also reject moves that lead to invalid geometry, in-
cluding degenerate, disconnected, or out-of-boundary rooms,
and those that fail to satisfy the constraints on exterior rooms
and staircase placeholders. One may think of satisfying floor
plan graphs as a hard constraint.

Moving staircase. We also provide an additional move
for the staircase placeholder. The staircase placeholder can
move along one of the axes by one grid size.

At each iteration of the simulated annealing, we first
select one of the floors to operate on or choose to move the
staircase placeholder. Then, we randomly choose one of
the three moves to apply. A move is rejected if it no longer
satisfies the hard constraint given by the floor plan graph or
rejected by the simulated annealing probability computed
using the change in the objective function.

a) b)

c) d)

Figure 7. All floor plan optimization moves. a) The original floor
plan, with each color showing the assignment of each room (e.g.
blue for living-room 0, orange for bedroom 0, and green for bed-
room 1; b) floor plan after extruding rightmost wall segment of
the blue room inwards; c) floor plan after extruding rightmost wall
segment of the blue room outwards; d) floor plan after swapping
the assignment for the green and the blue room.



4.5. Postprocessing of floor plan

After acquiring the floor plan for all floors, we must convert
it to a mesh. Each space assigned to a room is extruded by
the height of the wall and solidified by the thickness of the
wall; both parameters are the same across all rooms. Besides
placing furniture, we conduct the following postprocessing
operations.

Placement of doors and windows. For pairs of rooms
that share an edge in the floor plan, they must share a wall
segment with its length over a certain threshold. We then cut
the shape of the door from both room meshes and place the
door in that space. Doors can be opened towards the inside of
the house or away from the house’s entrance for ergonomics.
For other pairs of rooms designated by the user, i.e., between
dining rooms and living rooms, one may choose to remove
all the walls in between and place no doors. For rooms facing
the exterior of the house, if they can have windows installed,
we selectively cut off the shape of the window from the room
meshes with a limit on the maximal width of the window.
Then, we place windows in these shapes. Landscapes are
placed outside the window.

Adding materials to floors, ceilings, and walls. The walls
of rooms are applied with the following materials condi-
tioned on the room type: (ceramic) square tile, concrete,
brick, or plaster. The floors of rooms are applied with the fol-
lowing materials conditioned on the room type: tiled wood
floors, square or hexagonal, alternating or non-alternating
tiles, rug or concrete. The ceilings of rooms are applied
with plaster material. Materials are sometimes shared across
different rooms.

Adding staircases. We compute the intersection of the
space assigned as staircase rooms on consecutive floors. Our
constraint solver will make sure that the intersection is at
least the size of the staircase placeholder, which is non-empty.
We randomly sample one staircase per floor (excluding the
topmost one) and position them inside their corresponding
staircase rooms. We reject samples where the staircase and
the room in front of the steps fall outside the room or when
the consecutive staircase intersects. We cut off the shape of
the stairs from the room meshes and add guard rails around
the stairs.

5. Constraint Solver Details
5.1. Greedy Solving Algorithm

Optimizing over all rooms and all objects at the same time
is unfeasible due to the magnitude of the state-space. As a
result, we use a greedy algorithm to first solve the floor-plan,
then solve large, medium, and small objects respectively. At

Algorithm 1 Greedy Solving Algorithm

1: procedure GREEDYSOLVER(P )
2: SIMULATEDANNEALING(P,Rooms, r)
3: for r in rooms do
4: SIMULATEDANNEALING(P,BigObjects, r)
5: SIMULATEDANNEALING(P,MediumObjects, r)
6: SIMULATEDANNEALING(P, SmallObjects, r)
7: end for

each stage we solve each room separately. A very high-level
pseudocode of our solver algorithm is given as Algorithm 1.
This algorithm is not optimal in any sense, but the problem
at hand is computational intractible, and an optimal solution
is not required to obtain aesthetically pleasing scenes. We
provide this solver to prove our language can be optimized
efficiently, and to serve as a baseline for future improvements
or followup work.

5.2. Move Utilities

Cardinality Bounding Our solver starts with an empty
scene, and must add objects during optimization to satisfy
object-quantity constraints and objectives given by the user.
We implement this via the Addition and Deletion moves de-
scribed below, which add or remove one object. Choosing
to propose a random object type with a random set of rela-
tions would have vanishingly small likelihood of producing
a move which obeys the given constraints - typically only
a few object types and a few relation assignments (against
wall, on floor, etc) are actually valid.

To optimize efficiently, we implemented a recursive pro-
cedure to traverse through the constraint graph and find every
relevant context (such as ”ontop of bookcase” or ”against liv-
ingroom wall”) available in the current scene state, retrieve
any lower/upper bounds on object counts to be placed into
these contexts. For example if there are two shelves in the
current state, and the user has specified each shelf shall have
between 1 and 5 books placed on it, our procedure would
return 2 bounds, one for each shelf, with 1 and 5 as the lower
and upper bounds on object count.

These bounds are sensitive to the current state of the
scene: if the users specifies there should be more chairs in
the dining room than tables in the dining room, then the
current number of chairs will be used as an upper bound for
the number of tables and vice versa. This allows optimiza-
tion of arbitrary inequalities between object counts, since
by randomly performing valid additions and deletions, the
optimizer will explore the full space of discrete object counts
for every possible context.

Degree Of Freedom Computation Moving objects in the
full 6D pose space is completely unfeasible because of the
plane assignment hard constraints that need to be satisfied.



a) b) c) d) e) f)

g) h) i) j) k) l) m)

n) o) p) q) r) s) t)

u) v) w) x) y) z)

Figure 8. Variation in a chair asset with tuneable parameters. a) A base chair for comparison, followed by chairs with b) larger depth; c)
thinner seats; d) wider backs; e) more curvature in seats; f) extrusion in front; g) longer legs; h) larger backs; i)-k) tilted / outward-bending /
inward-bending legs; l), m) no leg bars along both axes; n) no arms; o)-p) arms with different attachments to the seat and back; q)-t) backs
partially covered/supported by horizontal or vertical bars; u)-v) different leg material (woven fabric / wood); w-x) different seat material
(leather / fabric); y)-z) different placement of blankets.

Enforcing these constraints by minimum distance scores
and considering movement only on the XY plane is another
option, but this still causes violation of the hard constraints
and is also wasteful as an optimizer state-space. Therefore,
we calculate the degrees of freedom of each object and only
move objects along the allowed subspace (e.g. painting only
moves on the wall it is assigned to).

For each object, we first obtain the planes that the object
is constrained to move on. We then compute two types of
DOFs. The translation DOFs are computed as the matrix
of projection onto the intersection subspace of the planes.
If the constraints are contradictory, this will be the zero
matrix. The rotation DOF is either the free axis of rotation
around which the object is allowed to rotate, or none if the
constraints do not allow rotational movement.

Resolving Discrete Move Poses The optimizer needs to
initialize every object that is added to the scene before
proposing any moves to it. This initialization must obey
the plane assignment hard constraints, so that the subsequent
continuous moves also obey the hard constraints. Thus,
we initialize objects by essentially sampling a random posi-
tion on the subspace defined by the plane assignments and

sampling a random rotation that is a multiple of π/2. The
position sampling is done by sampling a random position on
the first plane, and then repeatedly snapping the object to its
assigned planes with the specified margin. The validity of
the initialization is checked after each attempt, and if each
initialization attempt is unsuccessful for a certain number of
attempts (20 by default), the initialization is unsuccessful,
and the move is reverted.

Reversing Moves Not every proposed move is a valid
move. For instance, translating a painting too much might
cause it to overhang, or reassigning a sofa to another wall
might make it intersect another object in the scene. As a
result, after we apply any move, we check its validity. This
is done by checking that the chosen object does not collide
with any other mesh, and all the relation constraints of the
object are satisfied. If the move is not valid, then we reverse
the move to remove its effects. For instance, if the object
was moved by a rotation or translation, and the resulting
state is not valid, we restore the backup pose of the object. If
the move was an addition, we remove the object, and so on.
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Figure 9. Additional qualitative results on synthetic scenes [8].

5.3. Move Implementations

Addition To perform an addition, we extract all available
cardinality bounds from the current. Then, we discard all
bounds which are tight above, i.e. those for which adding an
object would violate an upper bounds.

The most challenging stage of addition is finding a
satisfying assignment for relevant constraints. If the user
specified scene[Seating].related to(room,
on floor).related to(room,
against wall).count() > 0 then we know
we must add some kind of seating that is against both the
floor and wall. However, many options exist: Seating could
mean either an armchair or a sofa, there are many possible
floors to place the seating onto, and many possible wall
planes attached to each floor plane. Moreover, any choice
for these variables could activate additional constraints, for
example the user may have written a rule that applies to
all sofas in the scene, or all objects in a particular room,
so if we choose for our seating object to be a sofa, or if
we choose to put it in that particular room, then additional

constraints may be added to the list yet to be satisfied.

This relation assignment problem is related to classic SAT
solving, except for that making an assignment can add ad-
ditional terms to the equation. Or equivalently, it is a SAT
problem where the full equation to be satisfied is deceptively
long due to new constraints becoming activated. We an-
ticipate that future versions of our solver can incorporate
classic SAT solving approaches directly. However, for our
current constraint programs we have found it is sufficient to
perform exponential search over all options, visiting each
child node in the search tree in a random order to ensure
unbiased results. This approach is exponential in the num-
ber of semantic and relationship constraints involved, but
fortunately these rarely number more than 3 or 4 (IE, 1-2
semantic classes ) and the branching factor tends to be small
(IE, relatively few different specific object options, or few
different wall planes to assign to).

For each valid assignment found, we procedurally gener-
ate a ”placeholder” asset and attempt to fit it into the scene as
described in ”Resolving Discrete Moves” as described above.



Placeholders are special versions of our 3D assets provided
by each procedural generator which have mostly planar sur-
faces and lower polygon count. E.g. the placeholder for a
chair would still have properly shaped legs, seat and back-
rest, but would not have any bevels, chamfers, nails/screws
or fine geometric details. This lower polygon representation
speeds up collision checking, and eliminates the need for
us to heuristically detect flat planes on the object, since the
asset author provides these procedurally.

Deletion Deletion uses the same cardinality bound logic as
addition, but chooses a random object cardinality bound that
is not tight below, and proposes to delete it to see if score is
reduced. Typically these moves do not help the immediate
score, as we incentives placing as many objects as possible,
but can help to eliminate particularly poorly placed objects
or to avoid local optima in object counts.

Resample Resample’s primary function is to replace an ex-
isting object in the scene with an object of the same class but
with new parameters. This often causes a change in shape,
e.g. the length/width of a table will change, or the number of
cells in a shelf may increase. Changing these parameters is
desirable as it may increase/decrease the objective function
(e.g. if a volume() or min distance) is changed as a result).
To place the new object in the scene, we try aligning each of
the bottom corners of the new bounding box with that of the
old object, and check each pose for collisions, which allows
the object to grow/shrink strictly to the left or right if it is
attached to a wall. We assume relation assignments from the
old object remain valid, since regenerating an object with
new parameters does not change its semantics.

Translate Let P be the projection matrix computed as the
translational degree of freedom for the chosen object. We
sample x⃗ ∈ R3 where xi ∼ N (0, σ2) for i = 1, 2, 3, and the
variance σ2 is proportional to the temperature. The object is
then translated by Px⃗. This makes the object take a random
step along the subspace on which it is constrained to.

Rotate Let e⃗ be the axis of rotation computed as the rota-
tional degree of freedom for the chosen object. We sample
θ ∼ N (0, σ2) where the variance σ2 is proportional to the
temperature. The object is then rotated by θ around the axis
e⃗. This makes the object take a small random rotation on the
subspace on which it is constrained to.

ReinitPose reinitializes the 6DOF pose of the object by
resolving the discrete move poses again. Since the object
relations are the same, the effect is essentially sampling
a random position and orientation on the same constraint
subspace. This move is useful for getting a good layout in

Figure 10. Additional qualitative zero-shot results on SRD [13] test
dataset.

the early stages of optimization and the cases in which an
object is stuck in a sub-optimal position.

ReassignPlane . As explained in Addition, if the user spec-
ifies an object to be placed against one or more surface(s),
then multiple options usually exist for which surfaces to use.
This move simply attempts to swap the object to a different
plane, e.g. move a sofa to a different wall, or a bottle to a
different row of a shelf.

ReassignTarget Similarly, multiple options often exist for
which object an object is a child of in the scene graph, e.g. a
plant pot could rest on one of many different shelves/tables
in a room. This move swaps the object to be a child of some
other object in the scene which satisfies the same constraints
as its current assignment.

6. Asset Generation Details
6.1. Asset Coverage and Variation

We provide 79 randomized procedural object generators. By
category, we cover Appliances (10 generators, 112 params),
Windows/Doors/Staircases (14 generators, 127 params), Fur-
niture (17 generators, 216 params), Decorations (15 gen-
erators, 92 params) and Small Objects (19 generators, 194
params). We provide 30 material generators, 120 params
total, split approximately evenly between types of Wood,
Ceramic, Fabric, Metal and others. Materials are assigned to
objects via customizable weighted lists, e.g. spatulas invoke



either wood, plastic or metal generators for each of their
ends. Following Infinigen, we report procedural parameter
count as a proxy of complexity; each parameter is a random
but controllable degree of freedom e.g “number of seats on
a sofa”. In all, we provide 40k lines of code, of which 25k
are object/material generators. For asset coverage, an incom-
plete list of the assets we cover is listed in Tab. 6. For asset
variations, an illustration of the variation of assets is shown
in Fig. 8.

6.2. Lighting and Camera Placement

Lights and windows use similar constraints as other objects
(e.g. maximize count & spacing), with random wattage/tem-
perature sampled from real-world ranges. Camera selection
follows Infinigen [14]: we sample at random, reject near
walls, and maximize depth variance.

7. Experiment Details

7.1. Shadow Removal

We use the model implementation from [9]’s codebase to
train the two variants of the model: R (trained on real dataset
only) and R+S (trained on real and synthetic datasets). Since
the codebase lacked a validation set, we developed our own,
comprising all image pairs across four scenes from the ISTD
training dataset. Additionally, in contrast to the provided
implementation, we used an L1 loss as stated in the paper.
We trained the two variants for 30k steps each, including a 30-
epoch linear warmup phase, using AdamW [11] optimizer
with default hyperparameters and a learning rate of 2e− 4.
We chose the runs to have an effective batch size of 32 (by
accumulating gradients for 4 steps and using the actual batch
size to be 8). The training process utilized four Nvidia 3090
GPUs, with Mixed-16 precision. Figure 10 shows additional
qualitative results.

We opted not to use the pretrained model from the code-
base, as our attempts to reproduce the results were unsuccess-
ful. Nevertheless, to ensure a fair comparison, we adhered
to the same implementation details for both variants. Addi-
tionally, we chose not to report SSIM (Structural Similarity
Index Measure), since both models demonstrated equivalent
performance, with no significant difference observed when
rounding to two decimal places, for this metric.

7.2. Occlusion Boundaries

We separately train three U-Net [17] models from scratch
on images generated from Infinigen Indoors, Infinigen [14]
and Hypersim [16]. We apply random {cropping, brightness
contrast} and color jittering with probability 0.6. We also use
the RMSprop optimizer with a base learning rate of 10−5, a
momentum of 0.99 and a weight decay of 10−8. Each model
is trained for 10 epochs using binary cross entropy loss.

Due to the absence of ground truth occlusion boundaries
in Hypersim (or any other photorealistic dataset), we ap-
proximate them by thresholding the gradient of the provided
depth maps. We carefully tuned this threshold on Hypersim
to give the best results.

We compare the performance of the U-Net models on a
curated test set of photo-realistic artist-designed synthetic
3D scenes for architecture visualization [8]. We extract the
ground truth occlusion boundaries of these scenes using the
tools provided in Infinigen. Additional qualitative results
shown in Fig. 9 underscore our claim that the Infinigen
Indoors - trained model generalizes better.

Method
Mean Error
Frequency ↓

More ↑
Realistic

More Realistic
Layout ↑

Realism
CI 99%

Layout Realism
CI 99%

ProcTHOR [3] 0.252 0.107 0.056 [0.054, 0.187] [0.021, 0.127]
ATISS [12] 0.232 [12] 0.287 0.307 [0.198, 0.389] [0.217, 0.410]
SceneFormer [19] 0.713 [12] 0.333 0.440 [0.241, 0.439] [0.339, 0.547]
FastSynth [15] 0.414 [12] 0.093 0.147 [0.046, 0.171] [0.083, 0.234]
Ours 0.175 0.795 0.760 [0.750, 0.835] [0.712, 0.803]

Table 5. Perceptual Study Results. We followed the method and
metrics from ATISS, but added Layout Realism, which says to only
consider arrangement. We used each method’s default renderer.

8. Perceptual Study

Following ATISS [12], we conducted a perceptual study
on Amazon Mechanical Turk to evaluate the realism of the
generated scenes and the realism of the generated layouts.
We compared Infinigen Indoors to ProcTHOR [3], ATISS
[12], SceneFormer [19], and FastSynth [15]. We presented
the subjects pairs of images from each method (for instance
Infinigen vs ProcThor) to evaluate overall realism and layout
realism. For mean error frequency, we asked the subjects if
the image from a method contained any obvious errors such
as flying furniture, overlapping furniture, etc. For layout real-
ism, we asked the subjects to focus only on the arrangement
of the furniture and ignore the style of individual objects.
Table 5 shows that the subjects preferred Infinigen Indoors
over all methods in terms of both realism, layout realism,
and the lack of obvious errors. An important caveat is that
“realism” may be influenced by asset and lighting quality.



• Household appliances
– Fridge, Beverage fridge (with racks)
– Dishwasher (with racks)
– Microwave
– Oven, Stove, Oven with stove (with racks)
– TV, Monitor
– Kitchen Sink (with faucets)

• Bathroom fixtures
– Bathroom sink (standing / embedded / tabletop)
– Bathtub (alcove / freestanding / corner)
– Hardware (towel bar / towel ring / toilet roll paper holder

/ robe hooks)
– Toilet (two-piece / one-piece / in-wall)

• Clothes
– Pants (underwear / shorts / pants)
– Shirts (T-shirts / shirts)
– Blankets / towel (folded / rolled)

• Architectural Elements
– Doors

* Lite / Louver / panel / glass panel door
* Door casings

– Staircases (with treads / banisters / guardrails / glass
railings)
* Straight / Cantilever / L-shaped / U-shaped staircase
* Spiral / curved staircase

– Rugs
– Warehouse racks / pallets

• Seatings
– Bar stool / office chair
– Armchair / dining chair / side chair / spholstered chair
– Beds (bedframe / mattress / pillow)
– Sofa

• Shelves (with drawers and doors)
– Cabinets / kitchen cabinets
– Cell shelves / wall shelves / bookcases / triangle shelves

• Table decorations
– Books (column / stack)
– Vases / Aquarium tank
– Plants in pots (floor-top / table-top)

• Tables
– Desks / Cocktail table / Dining table / Kitchen table

• Tableware
– Bottle (soda / wine / beer / juice) / jar
– Chopsticks / Knife(table knife / cleaver / chef’s knife) /

forks / spoons / spatulas / bowl / plate
– Cup (mug / shot glass / teacup / plastic cup) / wineglass
– Food bag(chip bag / food pouch / food bar) / Food box /

can / jar / Fruits in containers(i.e. tableware with fruits
placed inside)

– Pan / pot(Cooking pot / saucepan) / lid(of pots and pans)
• Wall decorations

– Balloons / wall arts / mirror
• Windows

– Sliding / awning / casement / glassblock / bay window

Table 6. Coverage of the assets in Infinigen Indoors.
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