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A. Image Formation in a Thermal Camera

The field of Infrared Thermography is focused on recover-
ing precise temperature measurements from the intensities
recorded by a thermal camera. For an in-depth understand-
ing of this subject, we refer the reader to [34]. In the fol-
lowing, we summarize the key concepts as pertaining to our
system.

Let ϵ denote the emissivity of the object and Tn denote
the corresponding surface temperature at time tn. The cor-
responding intensity Ithr returned by an ideal thermal cam-
era is written as

Ithr(tn) =rbs

(
τatm

(
ϵU(Tn) + (1− ϵ)U(Trefl)

)
+

(1− τatm)U(Tatm)

)
+ τbsU(Tsys)+

(1− rbs − τbs)U(Tbs), (31)

where rbs, τbs, and Tbs are the reflectivity, transmissivity
and temperature of the beam splitter respectively. τatm and
Tatm denote the transmissivity and temperature of the atmo-
spheric medium between the camera and the object. Tsys is
the effective temperature of the imaging system and Trefl is
the effective temperature of radiation from the surrounding
that is incident on the object. Note that the above expres-
sion, also called the radiometric chain, models the factors
external to the camera, such as the different components of
radiation that are incident at the lens of the thermal camera.

Factors internal to the camera, such as its operating tem-
perature, lens characteristics, its type (microbolometer vs.
cooled photon detectors), and sensor electronics, also influ-
ence the final intensity recorded by the camera. The result-
ing cumulative effect is modeled by the function U , called
the radiometric function of the thermal camera.

In our experiment, we assume all components other than
the object surface remain at constant temperature. This as-
sumption is reasonable as our experiments are limited to
short duration (< 3.5 seconds). Therefore Eq. (31) can be
written as

Ithr(tn) = αU(Tn) + Us (32)
where α = rbsτatmϵ (33)

Us = rbs
(
τatm(1− ϵ)U(Trefl)+

(1− τatm)U(Tatm)
)
+ τbsU(Tsys)+

(1− rbs − τbs)U(Tbs). (34)

Figure 9. The radiometric function of a typical thermal camera for
a small temperature range around room temperature. The linear fit
defined with T∗ = 300K introduces < 0.2% absolute error in in-
tensity with respect to the mean pixel intensity in that temperature
range.

A.1. Radiometric Function of Thermal Camera

The thermal camera’s radiometric function U maps the tem-
perature of a blackbody to the corresponding pixel intensity
the camera would measure under ideal conditions. It is pa-
rameterized by the planckian form of the Sakumo-Hattori
equations and is given by:

U(T ) =
R

exp(BT )− F
+O, (35)

where R,B, F and O are camera calibration parameters.
Note that other forms of Sakumo-Hattori equations exist but
the above expression is the one typically used by the camera
manufacturer.

The function is typically defined over a broad range of
temperatures, say [−40◦C, 150◦C]. However, the function
can be linearized around a nominal temperature T∗. In all
our experiments, the rise in pixel intensity due to light ab-
sorption was less than ≈ 1000 counts. Fig. 9 shows the plot
of U for typical values of R,B, F,O and a small tempera-
ture range around room temperature. The linear fit defined
around T∗ = 300K agrees well with the non-linear func-
tion. The maximum error introduced due to linearization
expressed as percentage of mean pixel intensity is 0.2%.



B. Analytical Solution to Eq. (7)
Eq. (7) from Sec. 3 can be written as

∂T

∂t
=

P (Ts − T )

H
+

S

H
. (36)

This can be written in standard form as∫ Tn

T1

dT

A−BT
=

∫ tn

t1

dt, (37)

where A = PTs+S
H and B = P

H . The solution to this differ-
ential equation is written as

1

−B
log

(
A−BTn

A−BT1

)
= (tn − t1) (38)

A−BTn = (A−BT1)e
−B(tn−t1) (39)

Taking BTn to the other side and subtracting BT1 from both
sides, we get

A−BT1 = (A−BT1)e
−B(tn−t1) +B(Tn − T1)

(40)

B(Tn − T1) = (A−BT1)(1− e−B(tn−t1)) (41)

Dividing both sides by B and substituting for A and B in
the above equation, we get

Tn − T1 = (
S

P
+ Ts − T1)(1− e−

P
H (tn−t1)) (42)

C. General Albedo, Flat Camera response
In applications with focus on shape or illumination, remov-
ing the effect of spatially varying albedo from the input im-
age is a useful first step. In such cases, if we have a camera
with a flat response across all wavelengths present in the
illumination, we can derive a simple expression to directly
compute the shading image.

Consider a monochrome camera with a constant spectral
response such that Γ(λ) = Γ0 ∀λ. This simplies Eq. (18)
from Sec. 4 to

I(p) =
γ

π
Γ0

∫
λ

ρ(x, λ)L(x, λ)dλ. (43)

Combining Eq. (22) from Sec. 4 and Eq. (43), we can write

L(x) =

∫
λ

L(x, λ)dλ =
πI(p)

γΓ0
+

S̃(x)

β
, (44)

where L(x) is the total scene irradiance across all λ. Note
that L(x) contains all the information about shape and illu-
mination. We have shown that it can be computed indepen-
dent of albedo from a single view without any assumption
about shape or illumination.

D. Computing Ek, F and L

Let Γb(λ),Γg(λ), and Γr(λ) be the sensor response func-
tions corresponding to the BGR channels in the cam-
era and let l(λ) be the emission spectrum of the white
LEDs obtained from the technical datasheets (see Fig. 2c).
The wavelengths of interest can be partitioned into Λ =
ΛB ∪ ΛG ∪ ΛR, where ΛB = [400nm, 530nm),ΛG =
[530nm, 620nm), and ΛR = [620nm, 1100nm). Note that
we include wavelengths in near infrared as well in our def-
initions since the sensor response functions are non-zero at
those wavelengths.

Since l(λ) is known, we can directly compute L as

L =

∫
Λ

l(λ)dλ. (45)

In our experiments, we use Φρ(λ) =
{ρ̃b(λ), ρ̃g(λ), ρ̃r(λ)} as the basis set for representing
albedo as a function of wavelength. These basis functions
are defined as

ρ̃b(λ) = I[λ ∈ ΛB ], (46)
ρ̃g(λ) = I[λ ∈ ΛG], (47)
ρ̃b(λ) = I[λ ∈ ΛR], (48)

where I[·] is the indicator function. Let ax =[
ρb ρg ρr

]T
be the corresponding vector of coefficients.

Since our basis functions are made up of indicator func-
tions, their effective role is to restrict the integration limits
in the definition of Ek and F. We can now define these
vectors as

Eb =
[∫

ΛB
l(λ)Γb(λ)dλ

∫
ΛG

l(λ)Γb(λ)dλ
∫
ΛR

l(λ)Γb(λ)dλ
]

(49)

Eg =
[∫

ΛB
l(λ)Γg(λ)dλ

∫
ΛG

l(λ)Γg(λ)dλ
∫
ΛR

l(λ)Γg(λ)dλ
]

(50)

Er =
[∫

ΛB
l(λ)Γr(λ)dλ

∫
ΛG

l(λ)Γr(λ)dλ
∫
ΛR

l(λ)Γr(λ)dλ
]

(51)

F =
[∫

ΛB
l(λ)dλ

∫
ΛG

l(λ)dλ
∫
ΛR

l(λ)dλ
]

(52)

E. Grayscale Separation Results
Figure 10 summarizes the albedo shading separation results
for the four target scenes using the grayscale approxima-
tion. Recall that the analytical expressions for the grayscale
approximation are simpler and do not require knowledge
of the emission spectrum or the camera response. Yet, as
seen in the results, the estimated shading is similar to that
obtained using the system of equations for general albedo
functions.
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Figure 10. The first row shows the HDR visible image (brightened for visualization). Note that the colorchart is not an input to our
method. The second row shows the estimated heat source intensity (turbo colormap) obtained using the method in Sec. 3. The last two
rows correspond to using Eqs. (17) and Eqs. (16) respectively. The estimated albedo is clipped to the range [0, 1]. The callouts for the
visible image, heat source intensity, and shading are normalized individually to aid visualization.


