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A. Proof for propositions

Figure 8

Proof for proposition 1: Consider the hyperbolic triangle
formed by x,yi,yj . Let the angle ∠ŷixyj/2 = θi,j and
dH(yi,yj)/2 = di,j . By hyperbolic trigonometric relation-
ships we get,

sin(θi,j) =
sinh(di,j)

sinh(r)

di,j(θi,j , r) = arcsinh(sin(θi,j) sinh(r))

First, we show that di,j(θi,j) is a concave function over
θi,j (since r is fixed, we can treat sinh(r) = a as a constant).
Taking the second derivative of di,j(θi,j) we have,

d2

dθ2i,j
di,j(θi,j) =

−
a3 sin3 (θi,j) +

(
a3 cos2 (θi,j) + a

)
sin (θi,j)(

a2 sin2 (θi,j) + 1
) 3

2

,

Which is negative for θi,j < π. Thus, di,j(θi,j) is con-
cave for 0 < θi,j < π. Therefore, applying Jensen’s in-
equality for concave functions, we have

∑n
j=1 arcsinh(sin(θi,j)a)

n
≤ arcsinh(sin(

∑n
j=1 θi,j

n
)a).

One can see that the equality is achieved for equiangular
θi,j , i.e., at θi,j = π

n ,
∑n

j=1 di,j is maximized. On the other

hand, [11] showed that the angle of hyperbolic entailment
cones is less than π. Therefore, for n > 1, at least one point
lies outside the cone.
Proof for proposition 2: We consider a hyperbolic entail-
ment cone eminating from a point x ∈ H2. We consider
the area η within the cone where η = {u ∈ H2|dH(u,x) ≤
dmax}. Let the angle of the cone be θ. Now, we divide
the cone in to n equiangular hyperbolic triangles;see Fig. 8.
Invoking the trigonometric relationship in the hyperbolic
space, we get,

sin(
θ

2n
) =

sinh( p
2n )

sinh(dmax)
.

n sinh(dmax) sin(
θ

2n
) = n sinh(

p

2n
)

.
Then, we invoke the following Lemma.

Lemma 1. If the function f is differentiable at 0 and k ̸= 0,
then nf(k/n) → kf ′(0) as n → ∞.

Consider the limit n → ∞. Then, p → C. Therefore we
have,

θ

2
sinh(dmax) = C/2

C = θ sinh(dmax)

Now, we invoke the following lemma.

Lemma 2. If a hyperbolic triangle ABC has a right angle
at A, and d(A,B) = c, d(B,C) = a, d(C,A) = b, then its
hyperbolic area τ is given by sin(τ) = sinh(b) sinh(c)

(cosh(a)+1) .

Let the sum of the areas of the triangles be m. Then
using the above result, we get,

sin(m/2n) =
sinh(a) sinh(p/2n)

(cosh(r) + 1)

2n sin(m/2n) =
sinh(a)2n sinh(p/2n)

(cosh(r) + 1)

Now let n → ∞. Then m → η and p → C. Again, by
Lemma 1, we get,

η =
sinh(dmax)C

(cosh(dmax) + 1)
=

θ sinh(dmax) sinh(dmax)

(cosh(dmax) + 1)



By applying hyperbolic trigonometric relationships, we
get,

η = 2θ sinh2(
dmax

2
)

,
Now, since sinh(x) = ex−e−x

2 , consider,

lim
dmax→∞

η

edmax

.
Clearly, the above limit is larger than 1 at the infin-

ity. Therefore, η decreases exponentially with dmax, which
completes the proof.

B. Hyperparameters and training details
Our training setups closely resemble those of MERU.
We employ the AdamW optimizer, setting the parameters
(β1, β2) to (0.9, 0.98) and applying a weight decay of 0.2,
except for biases and learnable scalars where weight decay
is not applied. Our models undergo training across 120, 000
iterations, each with a batch size of 2048. The peak learn-
ing rate is set to 5× 10−4, which initially increases linearly
over the first 4000 iterations and then undergoes a cosine
decay down to zero. For data agumentation, we randomly
crop 50–100% area of images and resize them to 224×224.

C. Experiments on a larger model
To validate if our empirical findings extend to larger archi-
tectures, we conduct experiments with a model using ViT
B/16 as the base architecture. The results are illustrated in
Table 6, 7 8, 9, and 10. As shown, our results hold for larger
architectures.

D. Suitability for curved spaces
We noticed that when the curvature of the models are train-
able, MERU’s loss tend to suppress the curvature until it
gets clamped at 0.01. Intuitively, when the curvature gets
lowered, the hyperbolic space converges towards an Eu-
clidean space. On the other hand, with our loss, the cur-
vature tends to increase; see Fig. 13. This can probably be
attributed to the fact that our loss is more suitable for curved
spaces. MERU’s inability to converge in higher curvatures
provides further evidence for this hypothesis.
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ViT
S/16

CLIP 83.8 89.0 71.4 68.0 58.8 44.1 68.3 89.8 84.5 96.4 95.0 95.9 87.7 13.9 98.5 83.9 56.4 55.3

MERU 83.6 89.1 71.1 67.5 58.2 41.4 67.9 88.4 83.9 94.9 94.9 95.6 86.5 13.7 98.3 84.4 57.6 55.3

Ours 83.9 88.8 70.9 68.4 57.8 39.8 67.3 87.6 82.9 95.0 94.6 95.6 87.1 13.5 98.2 82.9 54.1 54.8

ViT
B/16

CLIP 86.1 91.2 74.2 70.4 61.3 49.2 70.5 90.6 86.0 96.5 95.7 96.5 89.0 15.2 99.0 86.4 55.7 56.6

MERU 85.5 90.9 72.8 68.8 59.1 47.3 68.9 89.0 83.5 95.9 95.2 96.3 87.8 14.5 98.8 84.3 55.2 56.9

Ours 85.9 90.4 73.1 67.1 60.4 48.2 67.4 89.1 83.2 96.2 95.4 95.9 88.4 16.1 98.8 85.2 55.9 56.7

Table 6. Linear probe evaluation. We train a logistic regression classifier on embeddings extracted from the image encoders of CLIP,
MERU and our model.
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CLIP 30.9 73.0 57.9 27.7 30.4 23.2 1.4 10.1 64.8 58.6 49.7 88.0 26.7 26.0 4.3 7.7 16.0 50.5 50.0

MERU 30.6 74.3 63.2 28.1 30.9 24.3 1.8 11.2 70.5 59.0 48.1 87.6 17.4 22.2 4.0 10.2 14.1 50.1 50.8

Ours 31.1 74.7 64.1 28.9 30.3 24.7 1.1 14.3 71.1 59.2 48.3 88.3 22.9 23.4 6.1 11.1 10.9 50.8 51.1

Table 7. Zero shot image classification performance with ViT B/16 architecture. We show overall better performance over both MERU
and CLIP.

text → image image → text

COCO Flickr COCO Flickr

R5 R10 R5 R10 R5 R10 R5 R10

CLIP 25.1 33.9 34.3 45.0 28.0 36.9 36.3 45.3

MERU 25.1 34.0 34.3 44.5 28.3 37.4 36.8 46.4

Ours 25.1 34.1 34.6 44.9 28.7 38.4 38.9 47.2

Table 8. Zero-shot image and text retrieval with ViT B/16 ar-
chitecture. We show overall better performance over both MERU
and CLIP.

Curvatures

0.1 0.2 0.5 1.0 2.0 3.0

Car
Parts

depth-1
MERU 21.1 18.1 - 5.1 - -
Ours 94.6 93.3 93.3 83.7 93.7 88.8

depth-2
MERU 0.0 0.0 - 0.6 - -
Ours 33.5 28.6 28.6 28.6 32.9 29.8

Open
Images

depth-1
MERU 31.1 34.6 - 26.3 - -
Ours 67.9 67.8 67.8 64.7 65.7 68.2

depth-2
MERU 10.2 12.8 - 9.1 - -
Ours 33.2 34.2 34.0 30.7 31.0 33.6

Table 9. Image hierarchy accuracy (%) with ViT B/16 archi-
tecture. Our method significantly outperforms MERU.



Figure 9. Qualitative results showing visual hierarchy as a measure of uncertainty in image retrieval. As illustrated, when the distance
to the [ROOT] increases (left → right), our model retrieves similar images with an increasing hierarchical order where the text prompt is
better described.



Figure 10. Qualitative examples of the superior text hierarchy of our model. We retrieve multiple text descriptions while traversing
from an image embedding to [ROOT]. Our model is able to retrieve richer hierarchical text descriptions compared to MERU.



Figure 11. Zero shot classification performance over curvature on different datasets. Our model is able to maintain a an approximately
consistent performance over varying curvature. In contrast, MERU did not converge for curvatures larger than 0.2.



Curvatures

0.1 0.2 0.5 1.0 2.0 3.0

depth-1
MERU 83.1 81.9 - 80.9 -
Ours 90.3 92.2 92.7 93.3 88.8 91.7

depth-2
MERU 57.7 50.4 - 54.4 - -
Ours 67.1 67.3 69.0 66.6 63.2 68.6

Table 10. Text hierarchy accuracy (%) with ViT B/16 architec-
ture. Our method further improves text hierarchies.

Figure 12. Distribution of the text embeddings of our approach
and MERU. The skew appearance of our approach aligns with a
hierarchical structure where the taxonomy of concepts generally
expand such that high-level concepts populate the areas closer to
[ROOT] and low-level details further away.

Figure 13. Behavior of the curvature while training. When the
curvature is trainable, MERU suppresses the curvature until it gets
clamped at 0.1. In contrast, our model increases the curvature.
This maybe an indication of the better suitability of our loss for
curved spaces.
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Ours 29.7 71.7 61.8 27.1 32.3 22.5 0.8 14.0 65.0 57.6 46.9 88.0 34.7 24.8 4.1 10.5 13.7 50.0 50.0

Ours (w/o
Einstein reg)

29.5 71.3 61.8 27.0 32.1 22.7 0.9 15.1 64.8 57.8 46.5 87.5 34.3 24.9 4.9 11.8 15.5 50.0 50.2

Table 11. Effect of the Einstein regularization loss in zero shot image classification. We noticed that having the regularization
marginally improves the results.

Figure 14. An illustration of the OpenImage hierarchies used to evaluate the models.



Figure 15. An illustration of the car parts hierarchies used to evaluate the models.


