Accept the Modality Gap: An Exploration in the Hyperbolic Space

Supplementary Material

A. Proof for propositions

c

Figure 8

Proof for proposition 1: Consider the hyperbolic triangle
formed by x,y;,y;. Let the angle /y;xy;/2 = 6, ; and
du(y;,y;)/2 = d, ;. By hyperbolic trigonometric relation-
ships we get,

sinh(di,j)

sin(0; ;) = sinh(r)

d; j(0; j,7) = arcsinh(sin(; ;) sinh(r))

First, we show that d; ;(6; ;) is a concave function over
¢;,; (since  is fixed, we can treat sinh(r) = a as a constant).
Taking the second derivative of d; ;(6; ;) we have,

d2
do?

1,3

di j(0i5) =
a®sin® (6; ;) + (a® cos? (6;;

)+ a) sin (6; ;)
(aZsin® (0; ) + 1

)

Which is negative for 6, ; < w. Thus, d; ;(6; ;) is con-
cave for 0 < 0; ; < m. Therefore, applying Jensen’s in-
equality for concave functions, we have

)
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g,
< arcsinh(sin(ﬁ)a).
n

> arcsinh(sin(0; ;)a)

n

One can see that the equality is achieved for equiangular

0ij.ie,atf; j = 7, >°" | d;;is maximized. On the other

1,5

hand, [11] showed that the angle of hyperbolic entailment
cones is less than 7. Therefore, for n > 1, at least one point
lies outside the cone.
Proof for proposition 2: We consider a hyperbolic entail-
ment cone eminating from a point x € H2. We consider
the area 7 within the cone where 77 = {u € H?|dy(u, x) <
dmaz}- Let the angle of the cone be . Now, we divide
the cone in to n equiangular hyperbolic triangles;see Fig. 8.
Invoking the trigonometric relationship in the hyperbolic
space, we get,
: P
sin(i) = 7.Smh(2")
2n sinh(dnax)

nsinh(da.) sin(;) =n Sinh(2£)
n n

Then, we invoke the following Lemma.

Lemma 1. [fthe function f is differentiable at 0 and k # 0,
then nf(k/n) — kf'(0) asn — oc.

Consider the limit n — oo. Then, p — C'. Therefore we
have,

gsinh(dmam) =C/2

C = Osinh(dmaz)
Now, we invoke the following lemma.

Lemma 2. If a hyperbolic triangle ABC has a right angle

at A, and d(A, B) = ¢, d(B,C) = a, d(C, A) = b, then its
sinh(b) sinh(c)

hyperbolic area T is given by sin(7) = ~eosh{@) 1) -

Let the sum of the areas of the triangles be m. Then
using the above result, we get,

. _ sinh(a) sinh(p/2n)
sin(m/2n) = (cosh(r) 1+ 1)
2m sin(m,/2n) = sinh(a)2n sinh(p/2n)

(cosh(r) + 1)

Now let n — oo. Then m — n and p — C. Again, by
Lemma 1, we get,

_ Osinh(dpae) sinh(dimae)

sinh(dmaz)C
cosh(dmaz) +1) (cosh(dmaz) + 1)

T



By applying hyperbolic trigonometric relationships, we
get,

n =20 sinhg(%)

9
ef—e ”

= consider,

Now, since sinh(z) =

lim N

dmaz—00 edmaz

Clearly, the above limit is larger than 1 at the infin-
ity. Therefore, 1 decreases exponentially with d,,,, which
completes the proof.

B. Hyperparameters and training details

Our training setups closely resemble those of MERU.
We employ the AdamW optimizer, setting the parameters
(81, B2) to (0.9,0.98) and applying a weight decay of 0.2,
except for biases and learnable scalars where weight decay
is not applied. Our models undergo training across 120, 000
iterations, each with a batch size of 2048. The peak learn-
ing rate is set to 5 x 104, which initially increases linearly
over the first 4000 iterations and then undergoes a cosine
decay down to zero. For data agumentation, we randomly
crop 50-100% area of images and resize them to 224 x 224.

C. Experiments on a larger model

To validate if our empirical findings extend to larger archi-
tectures, we conduct experiments with a model using ViT
B/16 as the base architecture. The results are illustrated in
Table 6,7 8,9, and 10. As shown, our results hold for larger
architectures.

D. Suitability for curved spaces

We noticed that when the curvature of the models are train-
able, MERU’s loss tend to suppress the curvature until it
gets clamped at 0.01. Intuitively, when the curvature gets
lowered, the hyperbolic space converges towards an Eu-
clidean space. On the other hand, with our loss, the cur-
vature tends to increase; see Fig. 13. This can probably be
attributed to the fact that our loss is more suitable for curved
spaces. MERU’s inability to converge in higher curvatures
provides further evidence for this hypothesis.
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CLIP 83.8 89.0 71.4 68.0 58.8 44.1 68.3 89.8 84.5 96.4 95.0 959 87.7 13.9 985 83.9 56.4 553

iT
S\;116 MERU 83.6 89.1 71.1 67.5 582 41.4 679 88.4 83.9 949 949 95.6 86.5 13.7 98.3 84.4 57.6 55.3
Ours 839 88.8 70.9 684 57.8 39.8 67.3 87.6 82.9 950 94.6 95.6 87.1 13.5 98.2 829 54.1 54.8

CLIP 86.1 91.2 742 704 61.3 49.2 70.5 90.6 86.0 96.5 95.7 96.5 89.0 15.2 99.0 86.4 55.7 56.6

iT
];]/116 MERU 85.5 909 72.8 68.8 59.1 47.3 689 89.0 83.5 959 952 96.3 87.8 14.5 98.8 84.3 552 56.9
Ours 859 904 73.1 67.1 60.4 482 674 89.1 83.2 96.2 954 959 884 16.1 98.8 852 559 56.7

Table 6. Linear probe evaluation. We train a logistic regression classifier on embeddings extracted from the image encoders of CLIP,
MERU and our model.
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CLIP 309 73.0 579 27.7 304 232 14 10.1 64.8 58.6 49.7 88.0 26.7 260 43 7.7 16.0 50.5 50.0
MERU 306 743 632 281 309 243 1.8 11.2 705 59.0 48.1 87.6 174 222 40 102 14.1 50.1 50.8
Ours 31.1 747 64.1 289 303 247 1.1 143 71.1 592 483 883 229 234 6.1 11.1 109 50.8 51.1

Table 7. Zero shot image classification performance with ViT B/16 architecture. We show overall better performance over both MERU
and CLIP.

Curvatures
text — image image — text 0.1 02 05 1.0 20 30
COCO Flickr COCO Flickr denth-1 MERU 21.1 181 - 51 - -
P Ours 94.6 93.3 93.3 83.7 93.7 88.8
RS RI0O R5 RI0O RS RI0O R5 RIO Parts
depth-2 MERU 00 00 - 06 - -
CLIP 25.1 339 343 450 28.0 369 363 453 P2 Ours 335 28.6 28.6 28.6 32.9 29.8
MERU 25.1 340 343 445 283 374 36.8 464 ool MERU 311 346 - 263 - j
Ours 25.1 34.1 34.6 449 287 384 389 472 open ‘Pl ous 679 67.8 678 647 657 682
Images MERU 102 128 9.1
Table 8. Zero-shot image and text retrieval with ViT B/16 ar- depth-2 ' B : . §
chitecture. We show overall better performance over both MERU Ours 33.2 342 340 307 31.0 336

and CLIP.
Table 9. Image hierarchy accuracy (%) with ViT B/16 archi-

tecture. Our method significantly outperforms MERU.
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Figure 9. Qualitative results showing visual hierarchy as a measure of uncertainty in image retrieval. As illustrated, when the distance
to the [ROOT] increases (left — right), our model retrieves similar images with an increasing hierarchical order where the text prompt is
better described.
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Figure 10. Qualitative examples of the superior text hierarchy of our model. We retrieve multiple text descriptions while traversing
from an image embedding to [ROOT]. Our model is able to retrieve richer hierarchical text descriptions compared to MERU.
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Figure 11. Zero shot classification performance over curvature on different datasets. Our model is able to maintain a an approximately
consistent performance over varying curvature. In contrast, MERU did not converge for curvatures larger than 0.2.



Curvatures

01 02 05 10 20 3.0

deol  MERU 831 819 - 809 -

epth- Ours 90.3 922 927 933 88.8 91.7

deoha  MERU 577 504 - 544 - -
p Ours 67.1 673 69.0 66.6 632 68.6

Table 10. Text hierarchy accuracy (%) with ViT B/16 architec-
ture. Our method further improves text hierarchies.
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Figure 12. Distribution of the text embeddings of our approach
and MERU. The skew appearance of our approach aligns with a
hierarchical structure where the taxonomy of concepts generally
expand such that high-level concepts populate the areas closer to
[ROOT] and low-level details further away.
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Figure 13. Behavior of the curvature while training. When the
curvature is trainable, MERU suppresses the curvature until it gets
clamped at 0.1. In contrast, our model increases the curvature.
This maybe an indication of the better suitability of our loss for

curved spaces.
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Table 11. Effect of the Einstein regularization loss in zero shot image classification. We noticed that having the regularization
marginally improves the results.

Figure 14. An illustration of the Openlmage hierarchies used to evaluate the models.
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Figure 15. An illustration of the car parts hierarchies used to evaluate the models.




