
A. Dataset Details

A.1. Data Generation

In this section, we provide additional details about the data

generation pipeline.

(A) Query Image. As mentioned in Sec. 3.1, the complete

list of text queries to retrieve raw images from the LAION

dataset includes living room, bedroom, and kitchen.

(B) Find Objects of Interest. For each image, we use

Detic [19] and SAM [64] to find segmentation masks of

the 9 object categories of interest. First, we prompt Detic

to find all instances of each of these 9 categories within an

image. If no object is detected, the image is discarded. Next,

for each detected object instance, we compute the center

point (centerx, centery) of its bounding box [x1, y1, x2,

y2] and use this center point as a prompt for SAM [64] to

predict a segmentation mask. Among the 3 masks predicted

by SAM [64], we choose the one with the highest confidence

for downstream inpainting.

In Fig. 8 we visualize additional qualitative examples from

the SP training dataset generated using our automatic data

generation pipeline. Additionally, we also visualize exam-

ples of failures detected by our Detic filter and failed inpaint-

ing examples in Fig. 9.

A.2. HSSD Image Dataset

To finetune our CLIP-UNet model for SP mask prediction

on a high-quality image dataset free from inpainting arti-

facts, we utilize the Habitat [16, 17] simulator along with

the HSSD [13] scene dataset. HSSD is a synthetic indoor

environment dataset comprising 211 high-quality 3D scenes,

containing 18,656 models of real-world objects. We gen-

erate the HSSD image dataset using the Habitat simulator,

which allows us to manipulate scenes to render images with

or without object, thereby avoiding any artifacts that models

could exploit. The training dataset consists of ∼80k images

generated using 135 train scenes with 8 object categories.

Similarly, we create an evaluation dataset of ∼18k images

using 33 val scenes with 8 object categories. Next, we de-

scribe the details of our image sampling process for different

objects using the simulator.

Image Sampling. To generate images from diverse view-

points for each object instance, we first sample a set

of candidate camera poses determined from polar coor-

dinates (r, θ) relative to the object centroid, where r ∈
{0.5m, 1.0m, 1.5m, 2m} and θ ∈ {0◦, 10◦, ..., 360◦}. We

sample two types of viewpoints:

• Looking at Object: For images looking at the objects of

interest, we capture images with the camera’s principal axis

parallel to a ray from the camera’s center to the object’s

centroid. We only keep the frames where the object of

interest covers at least 5% of the frame. This step ensures

the inclusion of images where the target object and a valid

placement is visible.

• Random Viewpoints: To add diversity, we also generate

images from random viewpoints. Specifically, we run a

frontier exploration [69] navigation agent in the environ-

ment to achieve ∼90% coverage. We then randomly sam-

ple N images from the navigation trajectory, with N = 250
in our case, and add them to our dataset. We run this navi-

gation agent 3 times from random locations in each scene.

We do not apply any frame coverage constraint during this

phase to include images where no possible placement for

an object exists.

After determining all the viewpoints for each object in-

stance in a scene, we programatically generate images with

and without objects, target placement mask, and receptacle

masks to add to our dataset.

A.3. Real Evaluation Dataset

For our experiments in Sec. 5, we use a real image

dataset comprising 400 images, collected from the LAION

dataset [9] and 2 real-world environments from [70, 71].

Specifically, this dataset includes 200 images from the

LAION dataset that were not seen during training, and an

additional 200 images from the real-world environments

from [70, 71].

B. Metric Details

B.1. Receptacle Priors

To compute receptacle precision and recall metrics, we use

the receptacles shown in Tab. 5 for each object type from

HSSD [13] scenes. To find the receptacle categories, we

retrieve a list of receptacles that have an instance of the

target object category placed on top, using metadata from

the simulator. It is important to note that since all Trash Can

instances are usually found on the floor of an environment,

there is no designated receptacle category for the Trash Can

category. Similarly, while some instances of the Potted

Plant category are also found on the floor, we do not include

Floor as a receptacle category. This exclusion is due to the

fact that the annotations for the Floor category cover the

entire scene, making it challenging to quantify which part of

the Floor annotation is a good or bad for object placement.

B.2. Human Evaluation

To assess the performance of various methods on the Seman-

tic Placemen (SP) task, we conduct a human evaluation study

using Amazon Mechanical Turk. Specifically, we conduct

a user preference experiment in which human annotators

are asked to compare SP mask predictions from 5 models

(baselines from Tab. 2) and rank them from most to least

preferred. We conduct two types of the user study: one with



Object Category Receptacles

Cushion Couch, Bed, Sofa, Armchair

Potted Plant Coffee Table, Table, Chest of Drawers, Shelve, Kitchen Counter

Book Coffee Table, Table, Shelves, Couch, Sofa

Vase Coffee Table, Table, Chest of Drawers, Shelf, Kitchen Counter

Alarm Clock Bedside Table, Table, Chest of Drawers

Laptop Bed, Desk, Coffee Table, Table

Table Lamp Bedside Table, Chest of Drawers

Toaster Kitchen Counter

Trash Can -

Table 5. Mapping of receptacles for each object category.

Object Category Receptacles

Cushion Couch, Bed, Sofa, Armchair, Bench

Potted Plant Window Sill, Table, Chest of Drawers, Shelve, Balcony

Book Coffee Table, Table, Bookshelf, Desk, Nightstand, Bed

Vase Coffee Table, Table, Shelf, Mantle, Window Sill

Alarm Clock Bedside Table, Nightstand, Desk, Shelf

Laptop Desk, Table, Workstation

Table Lamp Desk, Nightstand, End Table, Shelf

Toaster Kitchen Counter, Shelf, Pantry

Trash Can Kitchen, Bathroom, Bedroom, Office

Table 6. Prior + Detector Baseline. Mapping of receptacles from

a LLM for each object category.

the real image dataset and another with images from the

HSSD [13] scene dataset used in our experiments. For each

study, we randomly select 400 images from the evaluation

split of the respective datasets. Each Amazon Mechanical

Turk worker is assigned 20 images to evaluate preferences,

and each worker is allowed to participate in the study only

once. We report percentage of times annotators rank each

model’s SP predictions as the best (i.e. ranked above all other

SP predictions) in Tab. 2 of the main paper.

C. Baseline Details

Prior + Detector. For this baseline we leverage common-

sense priors available in LLMs to find target receptacles for

a particular object and use a open-vocabulary detector, De-

tic [19], to localize the receptacle in the image. For each

of the 9 object categories in the dataset we prompt an LLM

for common receptacle categories on which each object is

found in indoor environment, shown in Tab. 6. Next, during

evaluation we use object detector to localize the segmenta-

tion mask of all valid receptacles for a object category in an

image.

LLaVA. VLMs like LLaVa [14] connect vision encoders

to LLMs, enabling general purpose vision-and-language

understanding. To evaluate LLaVA on the SP task, given an

input image, we prompt it to output normalized bounding

box coordinates for localizing a placement area. The prompt

we use is as follows:

“You are a smart assistive robot tasked with cleaning

this house. Localize the area in image as a

bounding box in normalized coordinates to place the

<object_category>”.

Subsequently, we convert the predicted normalized bounding

box into a binary segmentation mask, which is then used

as the SP mask predictions for downstream applications.

Refer Fig. 10 and Fig. 11 for qualitative examples.

GPT4V [65]. Similar to LLaVA [14], GPT4V is a multi-

modal LLM renowned for its vision-and-language under-

standing capabilities. To evaluate GPT4V for the SP task,

we feed it an input image and prompt it to output normal-

ized bounding box coordinates. These coordinates are then

localized to a placement area and converted into a binary

segmentation mask for use as SP mask predictions. We use

the following prompt:

“Here is an image of an indoor living environment.

We would like to determine all places in the image

where one could potentially place an object of

type <object_type> so that environment remains tidy.

For example, you should not place a blender on the

floor as blenders are not typically found on the floor.

Please respond, in text, with a list of bounding box

coordinates of potential locations. These bounding

box coordinates should be of the form

[min x, min y, max x, max y]

where x and y are 0-1 valued and correspond to the

fraction of the image along the width and height

of the image with the top left of the image as the

origin. Each set of coordinates should be on a new

line. If there are no locations in the image where

a <object_type> could be placed, respond only with

‘NONE’. Respond ONLY with these coordinates or NONE,

do not include any other text in your response.”

Subsequently, the predicted normalized bounding boxes are

converted to binary segmentation masks as SP mask predic-

tions for downstream evaluation. Refer Fig. 10 and Fig. 11

for qualitative examples.

C.1. OpenVocab Object Detector Ablations

Tab. 7 presents results for when varying the open vocabu-

lary object detectors used in our LLM+Detector baseline.

We compare performance on the HSSD validation split us-

ing TrP, RSP, and RSR metrics and consider three open

vocabulary detectors: Detic [19], OwlViT [72], and Ground-

edSAM [20, 73]. Overall, we find Detic achieves the highest

RSP, RSR, and comparable or better TrP compared to OwlVit

and GroundedSAM.



HSSD VAL

Method TrP (↑) RSP (↑) RSR (↑)

1) LLM + Detic 10.1 41.0 38.2
2) LLM + OwlVit 11.4 26.2 26.2
3) LLM + GroundedSAM 8.9 35.1 32.1

Table 7. Ablations of object detectors for prior based baselines.

D. Qualitative Results

In Fig. 10 and Fig. 11, we visualize qualitative examples

from the CLIP-UNet, Prior + Detector (Detic), LLaVA, and

GPT4V baselines. These examples are images in the SP real

evaluation split, which were used for human evaluation.

E. Embodied Evaluation Setup

In this section, we detail the Embodied Semantic Placement

Policy used in Sec. 5.2 for evaluating the eSP task of build-

ing a tidying robot. Our experiments employ Hello Robot’s

Stretch robot [1] with the full action space as defined in [66].

Specifically, the observation space, shown in the Fig. 7 Ob-

servations, includes RGB+Depth images from the robot’s

head camera, the camera pose, the robot’s joint and gripper

states, and the robot’s pose relative to the starting pose of an

episode. The robot’s action space comprises discrete naviga-

tion actions: MOVE_FORWARD (0.25m), TURN_LEFT (30◦),

TURN_RIGHT (30◦), LOOK_UP (30◦), and LOOK_DOWN

(30◦). For manipulation, we use a continuous action space

for fine-grained control of the gripper, arm extension and

arm lift. The head tilt, pan and gripper’s yaw, roll and pitch

can be changed by a maximum of 0.02 − 0.1 radians in a

single step, while the arm’s extension and lift can be changed

by up to 2− 10cm per step. To perform the task with only

the robot’s observations and SP mask predictions from the

CLIP-UNet at each frame, we build a two-stage modular

policy, comprising “navigation” and “place” policies, illus-

trated in Fig 7 (a.) SP Guided Navigation Policy and (b.)

SP Guided Place Policy, respectively. The details for both

policies are as follows.

SP Guided Navigation Policy. Building upon the naviga-

tion policy from [68], we replace the semantic map module

with our semantic placement (SP) map module. To construct

the SP affordance map, we predict the SP mask using ego-

centric observations at each timestep. This mask is then

backprojected into a point cloud using preceived depth. We

bin the point cloud into a 3D SP voxel map and sum it over

height to derive the 2D SP map. Similar to [68], our naviga-

tion policy employs frontier exploration [69], using the 2D

SP map. We first build a SP map by running the policy with

the goal of maximizing coverage of the environment for 250
steps. On average, we achieve about 60% coverage of an

environment within these 250 steps. Subsequently, the agent

uses the SP map to navigate towards the SP mask instance

that occupies the largest area on the 2D map.

SP Guided Place Policy. We build upon heuristic place pol-

icy from [66]. This policy assumes that the robot is within

interactable distance (within 0.2m) of the target receptacle

where the object is to be placed. First, the agent takes a

panoramic turn until a valid SP prediction is found (i.e. not

on the floor). This involves projecting the depth and SP

prediction onto a point cloud, transforming it into the agent’s

base coordinates, and applying a height filter. Once a valid

SP prediction is identified, we estimate a placement point at

the center of the largest slab (point cloud) for object place-

ment on a flat surface. To identify the largest flat surface

slab, we score each point based on the number of surround-

ing points in the X/Y plane (with Z being up) within a 3cm
height threshold, similar to [66]. After determining the place-

ment point, we rotate the robot to facing the point. This is

required because the Stretch robot’s arm is not aligned with

the camera by default. If the robot is at least 38.5cm away

from the placement point, we move the robot forward, and

re-estimate the placement point as described in [66]. Finally,

when the robot is sufficiently close, we use inverse kinemat-

ics to compute a sequence of actions to move the arm 15cm
above the sampled voxel (to avoid collisions) to place (or

drop) the object.

F. Failure Modes

In this section, we describe various failure modes of our

CLIP-UNet model observed during its evaluation on the SP

task and in the downstream embodied evaluation of the eSP

task.

F.1. Semantic Placement

Refer to Fig. 14 for examples of failure modes in SP mask

predictions by our CLIP-UNet model. The common failure

modes include:

Surface Grounding. Predictions that are not properly

grounded to a surface of the receptacle in the image.

Incorrect Receptacle. Predictions with a 0 Intersection over

Prediction (IoP), indicating no overlap with any of the visible

receptacles in the image.

Geometry Unaware. Our method, by design, is not capable

of predicting SP masks that are object shape aware (as our

model’s only knowledge about the object is the object’s

category). Consequently, we sometimes observe placements

predicted by the model that are not geometry-aware, meaning

the SP masks highlight areas where there is insufficient space

to place a new object.

Misc. This category contains all other failure cases, includ-

ing predictions from the model that are noisy, placed on the

floor/ceiling, or involve closed receptacles, etc.

F.2. Embodied Semantic Placement

The majority of eSP evaluation failures come from the navi-

gation and place planner, which include:



Figure 7. Embodied Evaluation Pipeline. We build a two-stage modular policy consisting of: 1.) SP Guided Navigation Policy: Uses

frontier exploration and semantic placement affordance 2D map to navigate to placement area, 2.) SP Guided Place Policy: Uses predicted

SP mask, projects it onto a pointcloud to sample placement point and uses IK planner to place the object.

Navigation Failure. In 53.5% of cases, the navigation policy

fails to reach within 0.2m of the predicted SP mask. This is

often due to the requirement for precise navigation around

clutter.

Place Failure. The place policy fails 31.0% of the time to

execute fine-grained control to realize the highlighted SP

prediction. Occasionally, realizing SP predictions is not fea-

sible with the Stretch embodiment. For example, if a SP

mask indicates a placement at the center of a dining table,

the robot might be unable to reach it due to the table’s size

and the maximum arm extension of the Stretch robot. This

highlights the need for future work in learning SP in an

embodiment-aware manner to improve downstream perfor-

mance.

Incorrect SP Masks. In 15.5% of cases, the placement

predicted by the SP mask is incorrect, such as when the SP

mask is placed on an incorrect receptacle.

Refer to the attached videos in the supplementary material

for examples of these failure modes.

G. Limitations

Our approach is fundamentally constrained by the limitations

of open-vocabulary object detectors, segmentation models,

and inpainting models. Since we employ these advanced

“foundation” models off-the-shelf for automatic data genera-

tion, the quality of our generated data is heavily dependent on

the performance of these models. Moreover, the occasional

poor performance of these models can introduce biases into

the training dataset, which downstream models might exploit.

For example, false positive detections from open-vocabulary

detectors (e.g. a ceiling light detected as a lamp) may lead

to biases in predicting SP masks for lamps on the ceiling.

Similarly, imperfect inpainting models can produce artifacts

like partially inpainted generations that bypass our detector-

based validations, resulting in training data that may instill

unrealistic biases in our model. While finetuning on simu-

lated data from HSSD can mitigate some of these biases, it

might also introduce a domain gap for sim-to-real transfer.

Collecting high-quality real-world data for finetuning could

help to alleviate this limitation. Another challenge is that

deploying the SP prediction model zero-shot for applications

like eSP might yield SP predictions that are not realizable

given the robot’s physical capabilities. A potential solution

could involve finetuning the SP model with the downstream

task in an end-to-end manner. This aspect, however, remains

as part of future work.



Figure 8. Qualitative examples from SP train data generated using our proposed automatic data generation pipeline.



Figure 9. Qualitative examples of inpainting failure during SP data generation using our proposed automatic data generation pipeline.



Figure 10. Qualitative examples of SP masks predicted by all the baselines on SP Real val dataset



Figure 11. Qualitative examples of SP masks predicted by all the baselines on SP Real val dataset



Figure 12. Qualitative examples of SP masks predicted by all the baselines on SP HSSD val dataset



Figure 13. Qualitative examples of SP masks predicted by all the baselines on SP HSSD val dataset



Figure 14. Qualitative examples of failure modes of SP mask prediction by our approach


