A. Further Explanation of Concepts
A.1. Range Images and Point Clouds Conversion

In Section 3.1, we introduced range images as the modality
for both input and output within LiDAR Diffusion Models
(LiDMs). Subsequently, in Section 3.2, we provided a con-
cise overview of the conversion process from range images
to point clouds. This section extends our implementation
discourse by delving into more comprehensive details.

The depth values are logarithmically scaled. To covert
the pixel value v back into depth value, we define:

depth = 29*Y — 1, (1)

where w is a predefined scale factor. Given the normalized
location (a, b) of pixel =, where a,b € [0, 1], we can com-
pute its yaw and pitch through:

yaw = (2a — 1) x , (2)
pitch = (1 — b) x (fovyp — fovaown) + fovVaown, (3)

where fov,, and fovg,,, are specified based on the sen-
sor settings of different datasets. Through the above com-
putation, we can obtain the 3D coordinate p of the pixel
z. Likewise, we implement the conversion from a point
cloud to a range image by performing the inverse calcula-
tion. For the 32-beam scenario, fov,;, = 10°, foviown =
—30°, w = 5.53. For the 64-beam scenario, fov,, = 3°,
fovgown = —25°, w = 5.84.

The transition from range images to point clouds is char-
acterized by a lossless conversion. Conversely, when con-
verting from point clouds to range images, occlusions com-
monly emerge. This occurrence is intricately tied to the res-
olution of range images. At a lower predefined resolution,
multiple neighboring points tend to converge within a single
pixel of a range image. In contrast, with a higher resolution,
the incidence of missing pixels markedly rises, resulting in
sparser range images. Hence, it is important to appropri-
ately define resolutions in diverse scenarios to encompass
more points with little geometric loss and to main a high
density of range images. In the context of a 32-beam sce-
nario, we set H = 32 and W = 1024, while in the 64-beam
scenario, we set H = 64 and W = 1024.

A.2. Statistical Evaluation Metrics

In this paper, we adopt common statistical metrics, Jensen-
Shannon Divergence (JSD) and Minimum Matching Dis-
tance (MMD), for evaluation introduced in [1] and adopted
by some recent works [20, 22].

Jensen-Shannon Divergence (JSD) measures the de-
gree to which point clouds of synthesized set .S tend to oc-
cupy the similar locations as those of reference set R. It can

be defined as follows:

JSD (Psl|Pr) = 3 Dict. (PRlM) + 3 Dt (Ps|[M),
“)
where M = %(PR + Ps) and D, is KL divergence [10].
In this paper, we compute JSD after discretizing each Li-
DAR point cloud into 20002 voxels in the form of Birds’
Eye View (BEV), with width and length of each voxel 0.05.
Minimum Matching Distance (MMD) matches each
LiDAR point cloud of reference set R to the one in syn-
thesized set S with minimum distance and averages all dis-
tances in the matching. It indicates the fidelity of S with
respect to R. We define MMD as follows:

1 .
MMD (Ps||Pg) = @Y; win Dop(X,Y). (5)
R

Considering efficiency, we choose Chamfer Distance (CD)
instead of Earth Mover’s Distance (EMD) to represent the
distance of two LiDAR point clouds. Both are defined in
Sec. B.1.1. Different from JSD, the computation of MMD
requires traversing all reference samples for each synthe-
sized sample, which results in larger amounts of computa-
tion. To guarantee its efficiency, we adopt a larger voxel
size of 0.5 to voxelize each point cloud into 2002 BEV.

A.3. Perceptual Evaluation Metrics
A.3.1 Background

In general, distinguished from statistical evaluation metrics,
perceptual metrics describe the performance of generative
models through a perceptual space provided by pretrained
models. In light of the incompatibility of classification-
based models in the context of LiDAR scenes, we opt for
segmentation-based pretrained models to delineate the per-
ceptual metrics proposed in this paper.

Similar to the widely adopted perceptual metrics Fréchet
Image Distance (FID) [8] and Inception Score (IS) [17] in
image synthesis, we compute the results of our proposed
perceptual metrics in the final stage. Given a trained UNet-
like model © consisting of an encoder O ¢ with L layers and
a decoder ©p with L layers, the output activation of a pixel
(before dropout) from the final stage can be defined as:

afi”al = @é([‘r’@é(‘r)])a (6)

where @ fipq € REXWXC,

A.3.2 Aggregation Manners

Unlike classification-based network, the output of
segmentation-based networks is a map of activations.
Therefore, we cannot directly obtain the global feature of
the input. In this paper, we provide two possible manners,
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Figure 1. Example for two manners of partition-based aggregation
on range images and bird’s eye view (BEV). Angle-partitioned ag-
gregation performs average on partitions of several columns on
range images and of a sector on BEVs, while depth-partitioned
aggregation performs average on partitions of several rows on
range images and of a ring on BEVs. In this paper, we adopt
depth-partitioned aggregation by default for its rolling-operation-
invariant ability.

angle-partitioned aggregation and depth-partitioned aggre-
gation, to approximately represent the global feature given
the output map of activations of an input range image.
An illustration is shown in Figure 1. To obtain the global
feature of one LiDAR point cloud, we uniformly divide
it into P parts and concatenate all of them after average
pooling on each part, resulting in a vector with P x C
channels.

As shown in Figure 1 Above, angle-partitioned aggrega-
tion partitions each LiDAR point cloud into P sectors by
yaw angle. Since z-coordinate of each pixel on a range im-
age is defined through linear transformation of the yaw an-
gle of a point (¢f., Sec. A.1), the range image is partitioned
into P regions, and each is represented by /P columns.
Each sector has an equivalent region in the range image.

Similarly, in Figure 1 Below, depth-partitioned aggrega-
tion splits a point cloud into P rings in the BEV level and P
regions represented by H /P rows in the range-image level.
Note that, different from angle-partitioned aggregation, the
divided ring of the point cloud and its corresponding region
of the range image are not equivalent in each pair.

Since the LiDAR point clouds are density-varying with
depth, depth-partitioned aggregation is density-aware. Con-
trarily, the partitions by angle ignore the depth and each
represent a sub-LiDAR-point-cloud. In this paper, we de-
fault to the utilization of depth-partitioned aggregation, as
it effectively avoids the variability from rolling operation
associated with angle-partitioned aggregation.

A.3.3 Implementation Details

In this paper, we propose three perceptual metrics: Fréchet

Range Image Distance (FRID), Fréchet Sparse Volume Dis-

tance (FSVD), and Fréchet Point-based Volume Distance

(FPVD) and set the number of partitions P = 16 by default.

For each proposed perceptual metric, we further provide its

details as follows:

* FRID: RangeNet++ [12] is a range-image-based method
to predict per-pixel semantic labels. It adopts various
image-based UNet for training. In this paper, we adopt a
DarkNet21-based [13] model trained through the official
implementation'. With the trained model, we can easily
obtain the output in the final stage, which is in the shape
of 64 x 1024 x 32. We derive a global feature vector of
each range image with 512 channels followed by a spa-
tial averaging pooling. It is noteworthy that our proposed
FRID effectively addresses the issue of result instability
arising from random sampling, as indicated by the FRD
score introduced in [22].

* FSVD: Sparse volumes are a prevalent 3D modality in Li-
DAR scenes. Unlike range images, volumes can directly
represent 3D shapes without projection. To compute
FSVD, we adopt a simple backbone, MinkowskiNet [4],
to extract features from the sparse volumes converted
from range images. We utilize a public implementation
with the pretrained weights®> based on torchsparse [19].
We calculate the average of all active (i.e., non-empty)
voxel features for each partition in the final stage, result-
ing in a 1536-channel vector.

* FPVD: Leveraging the support of point clouds, the hy-
brid of point clouds and sparse volumes preserves a richer
set of geometric information compared to utilizing sparse
volumes alone. In the calculation of FPVD, we employ
SPVCNN [18] as the backbone, utilizing the public im-
plementation as in FSVD. The computational process of
FPVD is the same as FSVD, with the output of 1536-
channel global features.

A.4. Details of Training
A.4.1 Perceptual Loss for LIDAR Compression

The regularization of models based on the pixel-wise depth
of the synthesized range image and the ground-truth range
image has the potential to disproportionately penalize out-
puts that are, in fact, LiDAR-realistic. For instance, given
the same 2D projected shapes and scales in range images,
generating cars farther away from the ego-center than closer
to the ego-center induces a high loss. To mitigate this chal-
lenge, we leverage the success demonstrated by perceptual
loss in the domain of image synthesis.

"https://github.com/PRBonn/lidar-bonnetal
’Implementation from https : //github . com/yanx27 /
2DPASS
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Figure 2. Different types of feature extraction for the computation
of perceptual loss.

[7] introduced the output of different image processing
stages in a pretrained VGG network [15] as the “content
representation”. This idea was subsequently evolved as
a perceptual regularization to learn both fine-grained de-
tails by matching lower-layer activations and global part ar-
rangement by matching higher-layer activations. This reg-
ularization is widely adopted in various image tasks, in-
cluding image super-resolution [2, 9], neural style trans-
fer [7], and image synthesis [3, 5]. Some recent popular
generators [6, 14] are trained in a perceptual space based
on LPIPS [21], a common learned perceptual metric to
evaluate image synthesis performance. Unfortunately, this
“learned” metric is not available in the context of LiDAR
scenes, and thus in this paper, we design perceptual loss
by matching the output activations of stages with different
scales, similar to the perceptual loss introduced in [3].

We utilize pretrained segmentation-based networks (e.g.,
RangeNet++ [12]) to extract features as the preparation of
feature matching. We explore four variants of perceptual
loss based on different types of feature extraction. An illus-
tration is shown in Figure 2.

A.4.2 Mask Prediction Loss in LIDAR Compression

Though range images are dense representation for LIDAR
scans, they contain a large number of invalid pixels. To
distinguish them from valid pixels, our autoencoder outputs
a binary mask along with the resulting range image. To this
end, we apply mask prediction loss to our reconstruction
loss and adversarial loss as follows:

Lyec (z) = Egl|lx — 2| + Mi[lp - ﬁ”% + Azllm — m”%]a
(N

Loan(r) = Ellog D([z, p,m]) + log(1 — D([Z, p,m]))],
(3

where m is the mask value corresponding to x.

B. Additional Experimental Results

B.1. Design of Autoencoders for LiDAR Compres-
sion

B.1.1 Settings

To study on the behavior of LiDAR compression with dif-
ferent manners and ratios of downsampling, we provide our
comprehensive studies on the design of autoencoders for
LiDAR compression. In Table 1, we conduct experiments
on various downsampling factors f. and f, for curve-wise
and/or patch-wise encoding, respectively. To set up a com-
parable test field, we fix computational resources to four
NVIDIA RTX 3090 GPUs and training steps to 40k steps
for all listed experiments. We train autoencoders on KITTI-
360 [11] and evaluate the quality of reconstruction in au-
toencoding process with perceptual metrics of reconstruc-
tion, i.e., R-FRID, R-FSVD, R-FPVD, and statistical met-
rics, i.e., Chamfer Distance (CD), Earth Mover’s Distance
(EMD). Following prior works [1, 20], we define CD and
EMD as follows:

o . A2 . NI
CD(Py, P3) = > mip [p—pl3 + Z min [lp = oI5
pEP; PEP;

)

EMD(P;, P3) =  min ; Ilp = (D)l (10)
PEP,

where P, and P; are the ground-truth and reconstructed
point clouds and ¢ is a bijection between them. Note that,
P, and P; are the point clouds projected back from range
images x and Z instead of the raw point clouds.

B.1.2 Analysis and Discussion

As shown in [14], performance of image compression is
highly related with the synthesis quality of DMs. By ana-
lyzing the results of either curve-wise or patch-wise encod-
ing in Table 1, we conclude several valuable clues for the
design of autoencoders: for curve-wise encoding (Curve),
(1) as indicated by metrics R-FSVD and R-FPVD, the qual-
ity in the point-cloud level decreases with f. increasing, and
(ii) when f. € {4,8,16}, curve-wise encoding strikes bet-
ter perceptually faithful results, while for patch-wise encod-
ing (Patch), (i) when f, = 4, with the same overall scale
factor f, patch-wise encoding results in comparable recon-
structed results of curve-wise encoding with f. = 16, and
(i1)) when f = 4, curve-wise encoding outperforms patch-
wise encoding by a large margin in both point-cloud and
range-image level.

Curve-wise and patch-wise encoding can be complemen-
tary: curve-wise encoding learns within horizontal recep-
tive fields to capture the curve-like structures existing in



fe fo c |Z] ‘ Overall Scale f  Encoded Size R-FRID| R-FSVD| R-FPVD| CD| EMD/] #Params (M)
4 1 2 4096 4 64 x 256 x 2 0.2 12.9 13.8 0.069 0.151 9.52
8 1 3 8192 8 64 x 128 x 3 0.9 21.2 174 0.141 0.230 10.76
Curve 16 1 4 16384 16 64 x 64 x 4 2.8 31.1 23.9 0.220 0.265 12.43
32 1 8 16384 32 64 x 32 x 8 16.4 49.0 38.5 0438 0344 13.72
64 1 16 16384 64 64 x 16 x 16 34.1 98.4 83.7 0.796 0.437 20.06
1 2 2 4096 4 32 x 512 x2 15 25.0 23.8 0.096  0.178 2.87
Patch 1 4 4 16384 16 16 x 256 x 4 0.6 15.4 15.8 0.142 0233 12.45
1 8 16 16384 64 8 x 128 x 16 17.7 35.7 33.1 0.384  0.327 15.78
1 16 64 16384 256 4 X 64 x 64 37.1 68.7 63.9 0.699 0416 16.25
2 2 3 8192 8 32 X 256 x 3 0.4 11.2 12.2 0.094 0.199 13.09
4 2 4 16384 16 32 x 128 x 4 3.9 19.6 16.6 0.197  0.236 14.35
Hybrid 8 2 8 16384 32 32 x 64 x 8 8.0 253 20.2 0277  0.294 16.06
B<f<64) 16 2 16 16384 64 32 x 32 x 16 21.5 542 44.6 0.491 0.371 17.44
2 4 8 16384 32 16 x 128 X 8 25 16.9 15.8 0.205 0.273 15.07
4 4 16 16384 64 16 x 64 x 16 13.8 29.5 25.4 0.341 0.317 16.86

Table 1. Performance of autoencoders in different downsampling factors f. and f, after 40k training steps on the KITTI-360 val [11].
fe is the curve-wise encoding factor, and f;, is the patch-wise encoding factor. f = f. x fﬁ is the overall scaling factor. Encoded size
(h x w x c) is the output after encoding, where h = H/f, and w = W/(fc X fp). We evaluate the reconstruction quality of the trained
autoencoders through reconstruction-based perceptual metrics (i.e., R-FRID, R-FSVD, R-FPVD) and statistical pairwise metrics (i.e., CD,
EMD). For comparison of each encoding manner, bold means the best in one metric, and underline means the second best.

fe f» ¢ |Z| | OverallScale f EncodedSize | FRID) FSVD| FPVD] JSD| MMD (x10"%)| #Params (M)
4 1 2 409 4 64 %256 x2 | 271 148 118 0.262 533 9.5+36*
Curve 8 1 3 819 8 64 x 128 x 3 162 85 68 0.234 5.03 10.8+258
16 1 4 16384 16 64 x 64 x 4 142 116 106 0.232 5.15 11.14258
1 2 2 409 4 32x512x2 | 205 154 132 0.248 6.15 2.9+436*
Patch 1 4 4 16384 16 16 %256 x4 | 180 60 55 0.230 5.34 12.5+258
1 8 16 16384 64 8 x 128 x 16 192 88 78 0.243 5.14 15.8+258
2 2 3 8192 8 32 x 256 x 3 161 73 63 0.228 5.44 13.14258
2 2 3 16384 8 32 x 256 x 3 165 76 65 0.231 528 13.14258
Hybrid 4 2 4 16384 16 32x128 x4 | 145 77 68 0.222 5.10 14.44258
8<f<64) 8 2 8 16384 32 32 x 64 x 8 188 83 71 0.228 533 16.1+258
2 4 8 16384 32 16 x 128 x 8 162 56 49 0.228 4.82 15.14258
4 4 16 16384 64 16 x 64 x 16 195 80 70 0.240 5.84 16.9+4258

Table 2. Performance of LiDMs with autoencoders in different downsampling factors f. and f, after 10k training steps on the KITTI-360
val [11]. fc is the curve-wise encoding factor, and f, is the patch-wise encoding factor. f = f. x fg is the overall scaling factor. Encoded
size (h X w X c) is the output after encoding, where h = H/f, and w = W/(f. x fp). We evaluate the synthesis quality of the trained
LiDMs through perceptual metrics (i.e., FRID, FSVD, FPVD) and statistical metrics (i.e., JSD, MMD). For comparison of each encoding
manner, bold means the best in one metric. We present the number of parameters (#Params) with blue for the autoencoder part and red is
for the diffusion model part. *: Modification on the number of basic channels for appropriate GPU memory cost.

range images, and patch-wise encoding after curve-wise en-
coding vertically extends the receptive fields to learn object-
level information. Following this nature, we design autoen-
coders to compress range images through both curve-wise
and patch-wise encoding as hybrid encoding.

Based on the aforementioned analysis, we conduct stud-
ies on hybrid encoding (Hybrid) with diverse settings,
keeping overall scale 8 < f < 64. The results are listed
in Table 1. Considering both performance and efficiency
(overall scale), we select two settings: (a) f. = 2, f, = 2,
and (b) f. = 2, f, = 4. We indicate that Model (a) outper-
forms all settings of curve-wise and patch-wise encoding
when f > 8, and Model (b) achieves both competitive per-

formance and high compression rate.

B.2. Design of LiDAR Diffusion Models
B.2.1 Settings

In Sec. B.1, we report the performance of autoencoders with
different encoding manners and scaling factors. Although
the reconstruction performance on validation set and the
synthesis quality of DMs show a strong relation, the two are
not always positively correlated. Thus, to further explore the
behavior of LIDAR compression, we conduct experiments
to train DMs with the trained autoencoders. The results are
reported in Table 2. We train each DM with 10k steps and
adopt the same experimental setup in Sec. B.1. We apply



50 sampling DDIM [16] steps to each model and generate
5,000 samples for evaluation.

B.2.2 Analysis and Discussion

Through the experimental results in Table 2, we conclude
a similar fact as in Sec. B.1 that hybrid encoding generally
performs much better than curve-wise or patch-wise encod-
ing with the same compression rate. However, though the
reconstruction performance of Model (a) (f. = 2, f, = 2)
performs the best among all settings in Table 1, Model (b)
(fe = 2, f, = 4) generates samples with better synthesis
quality under an attractive compression rate. Therefore, in
this paper, we adopt Model (b) (f. = 2, f, = 4) as the
default autoencoder for LIDAR compression.

C. Additional Qualitative Results
C.1. 32-Beam Unconditional LIDAR Generation

In Fig. 3, we visualize the results unconditional LiDM on
32-beam data. 32-beam results appear sparser and nois-
ier than the 64-beam results. We argue that this is highly
related to the density and quality of the collected LiDAR
point clouds. The 64-beam dataset, KITTI-360 [11], pro-
vides point clouds with denser foreground objects and clear
boundaries between objects and backgrounds (e.g., walls,
roads). LiDMs benefit from the dense data, and thus can
recognize objects more easily and learn from the geometry
of complex 3D scenes.



Figure 3. Unconditional samples on 32-beam scenario.
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