
CrowdDiff : Multi-hypothesis Crowd Density Estimation using Diffusion Models

Supplementary Material

A. Pseudocodes
The pseudocode for training is given in Algorithm A.1 and
testing in Algorithm A.2 for CrowdDiff.

Algorithm A.1 Training phase

def train(images,density_maps,gt_counts):
"""

images: [B, H, W, 3]
density_maps: [B, H, W]
gt_counts: [B,]

"""

# Density scaling
density_maps = (2*scale*density_maps-1)

# Corrupt density_maps
t = randint(0,T) # time step
eps = normal(mean=0,std=1) # noise: [B,H,W]
crpt_density_maps =
diffusion_process(density_maps,eps,t)

# Estimate noise and encoder-decoder features
eps_pred, feats =
denoising_network(images,crpt_density_maps,t)

# Estimate crowd count
count_est = counting_decoder(feats)

# Compute denoising network loss
loss =
l_hybrid(eps_pred, eps) +
count_scale * l1_loss(count_est,gt_count)

return loss

Algorithm A.2 Testing phase

def testing(images, realizations):
"""
images: [B, H, W, 3]
realizations: N
"""

# Encode image features
feats = image_encoder(images)

# noisy density maps: [B, H, W]
density_pred = normal(mean=0, std=1)

# uniform sample step size
times = reversed(
linespace(diffusion_steps, sampling_steps))

# Perform DDIM sampling
for t in times:

# Predict noise from density_pred
eps_hat = denoising_network(images,

noisy_density, t)
# Compute posterior of noisy density
density_pred = q_posterior(noisy_density, eps,

t)

# Detect head locations
locations = contours(density_pred) # [B, N, *, 2]

# Perform crowd map fusion: [B, *, 2]
final_locations = crowd_map_fusion(locations)

# Compute crowd count
return count(final_locations) # [B, ]

B. Experimental details
1. Denoising network architecture Denoising network has
a U-Net architecture [4], and each downsampling and up-
sampling layer scales the features by a factor of two along
each spatial dimension. We use average pooling for down-
sampling with a 2 × 2 kernel, a stride of 2, and nearest
neighbor interpolation for upsampling. The 2-dimensional
convolution layers are 3 × 3 kernels with a stride of 1, and
the 1-dimensional convolution layers have a kernel size and
a stride of 1. In the multi-head self-attention module, the
channel dimension of each head is kept constant at 64, and
the number of heads is varied according to the channel di-
mension of each depth level. The denoising network and
the basic modules are illustrated in Fig. B.1.
Regression branch is a lightweight network with linear
layers and a Rectified Linear Unit (ReLU) [1] activation.
We apply global average pooling to maintain compatibility
along the spatial dimension for channel-wise concatenation.

C. Evaluation metrics
To evaluate crowd counting performance, we use the mean
absolute error (MAE) and mean squared error (MSE):
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as the performance metrics. Here, N is the total number
of test samples, cn is the ground truth count, and ĉn is the
prediction for the nth sample.

D. Datasets
We evaluate our method on five public datasets: JHU-
Crowd++[5], ShanghaiTech A[7], ShanghaiTech B[7],
UCF-CC-50[2], and UCF-QNRF[3] for crowd counting.
JHU-Crowd++ [5] has 2,722 training images, 500 valida-
tion images, and 1,600 test images collected from diverse
scenarios. The dataset consists of crowd images with num-
bers ranging up to 25,791 and images without any crowd.
ShanghaiTech A [7] contains 300 training images and 182
test images with annotations. We randomly select 30 sam-
ples from the training dataset as the validation dataset.
ShanghaiTech B [7] contains 400 training images and 316
testing images with annotations. We create a validation
dataset with randomly selected 40 crowd images from the
training dataset.
UCF-CC-50 [2] is a comparatively small crowd dataset



Figure B.1. (a) Network architecture for the denoising U-Net in conjunction with the count regression branch and the basic modules, (b)
ResNet block, and (c) Attention module, used to construct the network. Each cuboid in a stack represents the functioning modules in the
ResNet Block and whether the attention module is applied. Top stacks are in the encoder. Bottom stacks are in the decoder.

Figure C.1. Difference in feature maps without (top row) and with (bottom row) counting decoder.

for extremely dense crowd counting with just 50 samples.
We perform a 5-fold cross-validation following the standard
protocol in [2].
UCF-QNRF [3] dataset contains 1,535 images of uncon-
strained crowd scenes, with approximately one million an-
notations in total. The dataset is split into a training set of
1,201 images and a testing set of 334 images.
NWPU-Crowd NWPU-Crowd [6] is a large-scale dataset
collected from various scenes, consisting of 5,109 images.
The images are randomly split into training, validation, and
test sets containing 3109, 500, and 1500 images, respec-
tively. This dataset provides box-level annotations.

E. Additional qualitative results
We provide a qualitative comparison between the feature
maps of the denoising U-Net with and without the counting
branch prediction for different time steps in Fig. C.1. From
Fig. C.1, we can see that the decoder features are richer in
detail for the case with the counting branch than without
it. With the counting branch, the decoder generates features
for the crowd starting from the initial time step. The per-
formance of the counting branch further clarifies this, as the
predicted count has not varied with time and deviated from
the ground truth count significantly.
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