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A. Coordinate Representation Details
We describe our three coordinate representation variants

in detail, first focused on bounding-box location format .
Consider an image of dimensions (512, 512) containing a
cat. Let (10, 120, 30, 145) define the minimal bounding box
enclosing the cat in image space ordered as (x1,y1,x2,y2)
where (x1,y1) would describe the top left corner and (x2,y2)
would describe the bottom right corner of that bounding
box. We will use this example in following explanations.

Normalized Floating Point Values would normalize these
coordinates using image dimensions to a (0,1) range and di-
rectly use normalized values rounded to 4 decimal places.
In the given example, the location of the cat would be
described (0.0195, 0.2344, 0.0586, 0.2832) which is equal
to (10/512, 120/512, 30/512, 145/512) after appropriate
rounding.

Integer Valued Binning considers nb fixed bins across
the image that are described by integers 0 to nb. In our
case, for the LocVLM-B version we fix nb to 224 and
for LocVLM-L version we fix nb to 336. The original
bounding-box coordinates are mapped to the range (0, nb)
inspired by prior work [10, 58] using similar binning strate-
gies. In the case of our examples, the location of the cat
would be described (4, 52, 13, 63) for nb = 224 which can
be easily calculated by remapping the coordinate range as
(nb · 10/512, nb · 120/512, nb · 30/512, nb · 145/512) with
integer rounding.

Deviation from Image-Grid based Anchors defines a grid
of anchors in image space, selects the anchor closest to the
object center, and measures each bounding box coordinate
as a deviation from that anchor center. In our case, we set
na = 162 for LocVLM-B and and na = 242 for LocVLM-
L (motivated by the visual encoder transformer grid size).
In both cases, each anchor covers a 14⇥ 14 pixel patch. We
describe the anchors using (p, q) for p, q = 0, 1, ...13. For
our example, the bounding box fits the anchor (0, 4) and
we represent the bounding box as (0, 4, 3, 11, 6, 0) where
the latter four values correspond to pixel deviations from
the selected anchor center located at (7, 63) in (224 ⇥ 224)
image space.

We also utilize the alternate location form of point val-
ues, i.e. (cx, cy) for object center coordinates in image
space. Coordinate representations are utilized in the same
manner. Instead of four coordinates, we only use two that
correspond to the object center. For our given example, the
center of the cat would be (20, 132.5) which would be rep-
resented similar to the bounding box case.

B. Training Prompt Details
We introduce three instruction fine-tuning objectives that

utilize specific hand-crafted templates to generate the target
prompts used during training. We discuss in detail, these
three objectives presented in Tab. 3 (main paper): LocPred,
NegPred, and RevLoc.

For the first two cases, we use a set of 5 templates, one of
which is randomly selected for each sample during training.

1. Where is the object described
{category} located in image in terms
of {repr}?

2. What is the location of object
described {category} in terms of
{repr}?

3. Localize the object described
{category} in terms of {repr}?

4. Provide a {repr} for the the object
described {category}?

5. Generate a {repr} for the the object
described {category}?

The placeholder {category} is replaced with the rele-
vant ground-truth annotation of each particular object. In
the case of COCO dataset, these correspond to one of
the 80 COCO categories. For Localize-Instruct-200K (our
constructed pseudo-caption dataset), the object pseudo-
description is used in place of {category}. The {repr}
can be one of rep bbox = (x1,y1,x2,y2) bbox or rep point =
(cx,cy) point.

For LocPred, the target is of form ‘‘It is located
at {loc}’’ while for NegPred, the target is ‘‘There
is no such object in the image’’. The same
five identical prompts are randomly assigned to each ob-
jective to ensure no input patterns allow distinguishing be-
tween the two targets.

For the case of RevLoc, we similarly sample one prompt
from the following set of 3 templates:

1. Describe the object located at {loc}?
2. Provide a caption for object at {loc}?
3. What is at location {loc} in image?

The target is of form ‘‘There is a
{category}.’’ where category can either be class
label or a pseudo-description of that location.

C. Dataset Details
In our work, we first perform blurring of human faces

across all our data to preserve privacy in resulting models.
These modifications are applied to all our datasets before
performing any model training.



As described in Sec. 3.4 (main paper), we explore
pseudo-data generation to construct two new datasets, one
for object level captions in images and the other for video
object labels. We name them first PRefCOCO-100K, and
utilize it to construct our Localize-Instruct-200K dataset
used for our image level instruction fine-tuning (IFT) ob-
jectives. We name the second Pseudo-ActNet and utilize it
in our video level IFT objectives.

PRefCOCO-100K uses 95899 images from the COCO
dataset and uses an image VQA model (LLaVa [38]) to
generate object level descriptions using the COCO object
annotations. We first filter images to select those containing
unique instances of objects (e.g. only one dog in the image
as opposed to multiple dogs). This results in the 95899
images. Next, we ask the VQA model to generate a suitable
caption that describes the object category using both its
characteristics and relations to surrounding. In detail, we
use the exact prompt ‘‘Describe the {category}
in this image using one short sentence,
referring to its visual features and
spatial position relative to other
objects in image.’’ where category is the
ground-truth object label. These obtained object-level
captions are used to create question-answer (QA) pairs for
the images, resulting in 402,686 such QA pairs.

Following the prompting mechanisms for LocPred and
RevLoc described in Appendix B, we generate image-
conversation pairs from PRefCOCO-100K, resulting in a
human-conversation style dataset we use for training. We
refer to this dataset as Localize-Instruct-200K. This con-
tains twice as many image-conversation pairs as the orig-
inal, given repeated images for both LocPred and RevLoc
objectives. This is the main dataset used for our image level
training.

For our video domain IFT objective based training, we
only use category level labels and leave caption level train-
ing as a future direction. We construct Pseudo-ActNet
dataset that contains generated bounding-box annotations
for all objects belonging to COCO panoptic segmentation
dataset [37] categories. Eight uniformly sampled frames
are processes per video for annotation. We utilize the pre-
trained SEEM [77] model (motivated by [36]) to generate
pixel-level panoptic segmentation outputs for each selected
frame and convert these segmentations to bounding boxes
(panoptic also contains instance level distinction allowing
straightforward bounding box extraction). The panoptic
outputs (label for each pixel) also allows to obtain an ex-
haustive list of all COCO dataset categories present in each
video - this is necessary to find suitable negative categories
for our NegPred objective. Therein, for 8 uniformly sam-
pled frames of each video in the ActivityNet train split, we
generate bounding box annotations for all objects belong-
ing to COCO dataset categories and a list of COCO dataset

categories not present in those 8 frames. This data is suf-
ficient to implement our IFT objectives on the ActivityNet
video dataset with only the videos from the dataset. Our
promising results (see Tab. 7) for video-domain IFT using
only pseudo-data highlight the data scalability of our pro-
posed framework.

D. Video Architecture & Training
As discussed in Sec. 3.5 (main paper), we introduce two

video-domain variants of our framework, LocVLM-Vid-B
and LocVLM-Vid-B+. We first detail the architecture com-
mon to both variants, followed by specific training proce-
dures.

The overall architecture remains consistent to what is
presented in Fig. 2. The visual encoder processes nf frames
independently as images to produce nf ⇥ 256 visual tokens
per video (where 256 is tokens generated per image). The
spatio-temporal pooling strategy from [42] is utilized to ob-
tain a set of 256 + nf visual tokens per video. In detail,
the visual tokens are average pooled across the temporal di-
mension to obtain 256 spatial tokens and across the spatial
dimensions to obtain nf temporal tokens. These are con-
catenated to obtain the 256 + nf visual tokens per video.
The adaptor layer and LLM remain unchanged - this is
straightforward since both these layers perform set-to-set
operations independent of input sequence length.

The LocVLM-B-Vid+ variant combines our video level
IFT objectives with the training setup from [42]. Given
early experiments suggesting insufficiency of fine-tuning
only the adapter layer for our IFT objectives, we fine-tune
both the LLM and the adaptor layer. We also sample only 8
uniformly spaced frames per video (for compute reasons).
The three IFT objectives are modified to suit video domain
operation. Given the lack of explicit temporal modelling in
our visual backbone and the limited spatio-temporal aware-
ness even within the LLM, we focus on static objects in
videos to construct IFT targets. For LocPred and RevLoc,
we first filter out objects to select those present only in one
of the eight frames or relatively static ones (bounding-box
center (x,y) is within a 5 pixel range from their average if
present in multiple frames). Then, we obtain the average
bounding-box for that object across the frames. These static
bounding boxes and negative categories (from the dataset)
are used to construct the IFT targets in the same manner as
we do for images.

E. Spatial Reasoning Toy Experiment
We present additional details of the toy experiment intro-

duced in Sec. 4.2. We describe the dataset used for evalua-
tion, templates for prompting, and evaluation metric calcu-
lation. We also repeat our results from Tab. 4 (main paper)
for the left vs right variant here in Tab. 13.



Method ICL Acc (All) Acc (Left) Acc (Right)

BLIP-2 [33] 7 45.5 86.1 4.74
LLaVA [38] 7 55.1 84.5 36.5
Ours 7 69.5 79.7 59.2

BLIP-2 [33] 3 14.7 17.8 11.6
LLaVA [38] 3 55.1 84.7 36.4
Ours 3 76.5 90.4 61.5

Table 13. Spatial Reasoning: We repeat our results for left vs
right objects here.

We first construct an evaluation dataset, tagged COCO-
Spatial-27K containing 26,716 image-question pairs. We
build this off the COCO dataset [37] train split through a
fully-automated process, utilizing the ground-truth object
bounding-box annotations. We first filter out images based
on three constraints - this eliminates a large portion of im-
ages; hence we elect to use the train split to obtain a con-
siderable quantity of samples after filtering. We first select
images containing distinct category object triplets (only one
instance occurrence of each object category). For example,
an image would contain categories person, dog, and table
but only one of each. The second constraint ensures that
each object is entirely to the left or right half of the im-
age. This is based on object center not being in the central
20% region. The third constraint is that at least two objects
are on opposite sides (i.e. left and right half of image). This
provides at least two opposite side object pairs. The ground-
truth bounding box annotations enable easy automation of
this filtering procedure.

We next discuss our templates for prompting. For two
objects on opposite sides tagged obj 1 and obj 2, we
use the prompt Which side of obj 1 is obj 2
located? and query the model for a response. This
is for the direct VQA setting. In the case of in-context
learning (ICL) VQA setting, we preprend two exam-
ples to the prompt: Q: Which side of obj 1 is
obj 2 located? A: The obj 1 is located
to the left of obj 2. Q: Which side of
obj 2 is obj 1 located? A: The obj 2
is located to the right of obj 1. Q:
Which side of obj 3 is obj 1 located?. In
this case, obj 3 is the third object, and their ordering is
selected such that obj 1 is on one side, and obj 2, obj 3
are on the opposite side.

Building off standard VQA protocol in [25, 42], we sim-
ply query is the terms left or right are present in the
generated outputs, and rate it a success is the target term is
present in the generated response. We also visualize some
examples for this task in Fig. 3.

F. LLaVA Dataset Analysis
Our results in Tab. 13 indicate unusual disparity in left

vs right accuracy numbers, especially in LLaVA [38]. We
analyse the training dataset used in this LLaVA baseline to
better understand these disparities.

The LLaVA model [38] is instruction fine-tuned on a hu-
man conversation style dataset (LLaVA-Instruct-80K). This
dataset contains 80,000 image-conversation pairs leading
to 221,333 question-answer (QA) pairs across all images
(multiple QA for single image). We analyse the presence
of keywords related to left and right concepts that are
probed in our spatial-reasoning toy experiment (Sec. 4.2).

We first analyse the exact presence of the words left and
right in the corpus (noting this maybe in different con-
text, e.g. who has the right of way?). Of the 80,000
image-conversation pairs, left and right are present in 1619
(2.02%) and 5001 (6.25%) cases respectively. We provide
further statistics of the dataset in Tab. 14 indicating some
presence of conversation style training samples encompass-
ing left & right concepts. A large count of the keyword
right occurs in contexts with different meanings while
left mostly occurs in its spatial context. We hypothesize
that this may be the reason for predicting left more often
when models are queried with a spatial reasoning related
question (i.e. keyword left occurs more frequently with
spatial related words in training corpus).

Template Left (%) Right (%)

“the {} ” 171 (0.21) 1314 (1.54)
“{} side” 75 (0.093) 110 (0.14)
“to the {}” 80 (0.10) 93 (0.12)

Table 14. We count occurrences of various textual phrases related
to left & right concepts in the LLaVA-Instruct-80K dataset.

Therein, we attribute these observed disparities for left vs
right accuracy numbers to these artifacts present in datasets
used for training underlying LLMs.

G. Limitations & Broader Impact
Our video variant achieves strong performance on VQA

tasks but fails to understand temporal locations. In fact, di-
rection use of temporal locations paired with spatial loca-
tions results in training collapse for our framework. Ex-
tension of our instruction fine-tuning objectives to suitably
utilize time coordinates is left as a future direction. In terms
of broader impact, while our model uses generic vision and
language model architectures, we note that our training data
from public datasets may contain biases which should be
taken into account when deploying models trained using our
framework.



H. Qualitative Evaluation
In this section, we present visual examples showcasing

various aspects of our frameworks capabilities. We broadly
consider the three distinct settings of spatial reasoning, re-
gion description, and generated locations. Note that in all
visualizations we blur human faces to make them unidenti-
fiable for privacy reasoings.

Spatial Reasoning: We illustrate examples from our
COCO-Spatial-27K dataset highlighting both success cases
and failures of our framework. These qualitative results are
presented in Fig. 3. In each case, let as tag the two objects
within bounding boxes as obj1 and obj2. Following Ap-
pendix E, we prompt our framework with each image and
Which side of obj1 is obj2? and match the re-
sponse with the ground-truth answer. Correct matches (suc-
cess cases) on presented on the top row (green) and incor-
rect matches (failure cases) on bottom row (red). The cor-
rect matches indicate the spatial reasoning abilities of our
framework across a wide range of image types, including
cluttered scenes. The failure cases possibly indicate diffi-
culty at handling truncated / occluded objects.

Region Description: We next illustrate the region descrip-
tion abilities of our model (see Sec. 4.6 for details) in
Fig. 4. We query our framework with a set of bounding box
coordinate such as Describe the object located
at [22, 114, 86, 154]? (prompt details in Ap-
pendix B) paired with each image. We illustrate the ob-
ject coordinates as a bounding box (green) in each image.
The response of the model presented underneath each im-
age. We highlight invalid responses in red. These qualita-
tive evaluations indicate the ability of our model to not only
detect the object present in the queried region, but also de-
scribe it in terms of its surrounding: an ability unique to our
model in contrast to traditional object classifiers or detec-
tors. At the same time, the generated responses display lim-
itations in terms of object characteristic hallucination and
minimal spatial relation (e.g. to the left / right of) based
description.

Generated Locations: In our experiments, the tasks of
object hallucination and region description directly evalu-
ate the learning resulting from IFT objectives NegPred and
RevLoc respectively. In this section, we present some qual-
itative evaluation to understand the learning resulting from
the LocPred objective. These results are visualized in Fig. 5.
First, these images present samples from the validation split
of COCO modified in a similar manner (i.e. filtering explain
in Sec. 4) to our training set for LocPred objective. Each im-
age contains one instance of a particular category. The cat-
egory is labelled on top of each image, and the ground-truth
annotation for the object is in green while the prediction by
our framework is in blue. We illustrate the success cases
of our model in the top row and failure cases in the bottom

row. The success cases indicate strong localization skills
across diverse scene involving objects of variable sizes. The
failure cases denote difficulty in handling crowded / clut-
tered scenes and truncated / occluded objects. We also note
that direct comparison to classical object detectors is un-
fair given the down-sampled images (i.e. 224⇥ 224 or 336
sized) used by our framework (object detectors use higher
resolution images).



Figure 3. Visualizing Spatial Reasoning: We illustrate example images on which we perform our toy experiment for spatial reasoning
(Appendix E). Success cases on top row (green) and failure cases on bottom row (red).

There is a cow that is lying down on a grassy 
hillside, surrounded by other cows and trees.

There is a dog that is standing next to a cake on 
a table, looking at the cake with a candle on it.

There is a person that is a young girl, sitting in 
a suitcase filled with clothes and other items.

There is a cup that is a tall glass, 
placed on a table next to a pizza.

There is a backpack that is green and is positioned on the 
back of a person, likely a man, who is walking down the street.

There is a dog that is a brown and white dog, and it is 
standing next to a bottle of water, possibly drinking from it.

There is a cow that is lying down on a grassy 
hillside, surrounded by other cows and trees.

There is a dog that is standing next to a cake on 
a table, looking at the cake with a candle on it.

There is a person that is a young girl, sitting in 
a suitcase filled with clothes and other items.

There is a cup that is a tall glass, 
placed on a table next to a pizza.

There is a backpack that is green and is positioned on the 
back of a person, likely a man, who is walking down the street.

There is a dog that is a brown and white dog, and it is 
standing next to a bottle of water, possibly drinking from it.

Figure 4. Visualizing Region Description: Our framework possesses the unique ability of generating representative descriptions for a
selected region of an image, input to the model in terms of textual coordinates. We illustrate 3 example images with a bounding box (green)
denoting the queried region. The responses generated by our model are underneath each image, with invalid outputs highlighted red.



Figure 5. Visualization of LocPred Objective: We illustrate the bounding box locations generated by our framework (blue) when queried
with a category label (top of each image) and compare with the ground-truth bounding boxes (green). Success cases on top and failure
cases on bottom.


