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A. MonoDiff Forward Diffusion

In Sec. 3.2 of the paper, we presented the forward diffusion
equation for MonoDiff. In deriving the forward diffusion
equation in [1], a random vector from the latent Gaussian
distribution will be sampled at each time step conditioned
on the sampled vector on the previous time step. This can
be written as

xt =
√
αt xt−1 +

√
1− αt ϵt−1, (A.1)

where xt is sampled from the conditional distribution
q(xt|xt−1) ∼ N (xt;

√
αtxt−1, (1 − αt)I) Following,

Eq. (A.1), we can write the forward diffusion equation for
MonoDiff as follows:

ϕt =
√
αt ϕt−1 + (1−

√
αt)µ+

√
1− αt σ ϵt−1, (A.2)

where noise is sampled from a component in the Gaussian
Mixture Model (ΦGMM ) in Sec. 3.2 and will have a known
mean and a variance as opposed to the original forward
diffusion equation where the noise is sampled from a zero
mean Gaussian with a known variance. Here, ϕt is sampled
from the conditional distribution

q(ϕt|ϕt−1, µ, σ) ∼ N (ϕt; µ̃, σ̃
2)

µ̃ =
√
αtϕt−1 + (1−

√
αt)µ

σ̃ =
√
(1− αt)σI

This formulation satisfies the condition of ϕT being sam-
pled from the Gaussian component in the GMM as

p(ϕt|x) = N (µ, σ2I),

where x is the input image and αT = 0.

A.1. Forward process sampling

For completeness, we include the derivation for the forward
diffusion process sampling distribution parameters with ar-
bitrary t steps. From Eq. (A.2), we have that for all t =
1, ..., T

ϕt =
√
αt ϕt−1 + (1−

√
αt)µ+

√
1− αt σ ϵt−1.

Taking expectation on both sides,

E(ϕt) =
√
αtE(ϕt−1) + (1−

√
αt)µ

E(ϕt−1) =
√
αt−1E(ϕt−2) + (1−√

αt−1)µ

E(ϕt) =
√
αtαt−1E(ϕt−2) + (1−√

αtαt−1)µ

E(ϕt) =


√√√√ t∏

i=2

αi

E(ϕ1) +

1−

√√√√ t∏
i=2

αi

µ

E(ϕ1) =
√
α1 ϕ0 + (1−

√
α1)µ

E(ϕt) =


√√√√ t∏

i=1

αi

 ϕ0 +

1−

√√√√ t∏
i=1

αi

µ

E(ϕt) =
√
ᾱt ϕ0 + (1−

√
ᾱt)µ

Meanwhile, since the addition of two independent Gaus-
sians with different variances results in a Gaussian with a
variance equal to the addition of the two variances, the vari-
ance term will be,

σ̄2(ϕt) = (1− ᾱt) σ
2

The above mean and variance terms produces the for-
ward sampling equation for a random timestep as

ϕt =
√
ᾱt ϕ0 + (1−

√
ᾱt) µ+

√
(1− ᾱt) σ2 ϵ̄0 (A.3)

A.2. Forward Process Posteriors

Let’s derive the mean and variance of the forward process
posteriors.

q(ϕt−1|ϕt, ϕ0, µ, σ) ∝ q(ϕt|ϕt−1, µ, σ)q(ϕt−1|ϕ0, µ, σ)

∝ exp

(
− 1

2

((
ϕt − (1−√

αt)µ−√
αtϕt−1

)2
(1− αt)σ2

+

(
ϕt−1 −

√
ᾱt−1ϕ0 − (1−√

ᾱt−1)µ
)2

(1− ᾱt−1)σ2

))

∝ exp

(
− 1

2

(
αtϕ

2
t−1 − 2

√
αt

(
ϕt − (1−√

αt)µ
)
ϕt−1

(1− αt)σ2

+
ϕ2t−1 − 2

(√
ᾱt−1ϕ0 + (1−√

ᾱt−1)µ
)
ϕt−1

(1− ᾱt−1)σ2

))

= exp

(
− 1

2

(
1

σ2

( αt

1− αt
+

1

1− ᾱt−1︸ ︷︷ ︸
1

)
ϕ2t−1

− 2

σ2

( √
ᾱt−1

1− ᾱt−1
ϕ0 +

√
αt

1− αt
ϕt

+
(√αt(

√
αt − 1)

1− αt
+

1−√
ᾱt−1

1− ᾱt−1

)
µ︸ ︷︷ ︸

2

)
ϕt−1

))
,



where

1 =
1

σ2

αt (1− ᾱt−1) + (1− α1)

(1− α1) (1− ᾱt−1)

and which gives the posterior variance

β̃t =
1

1
=

1− ᾱt−1

1− ᾱt
(1− αt)σ

2

Then, the posterior mean can be obtained by 2 / 1 and

let’s consider each term in 2 separately.

γ1 =

√
ᾱt−1

(1− ᾱt−1)σ2
/ 1 =

1− αt

1− ᾱt

√
ᾱt−1

γ2 =

√
αt

1− αt
/ 1 =

1− ᾱt−1

1− ᾱt

√
ᾱt

γ3 =

(√
αt(

√
αt − 1)

1− αt
+

1−√
ᾱt−1

1− ᾱt−1

)
/ 1

= 1−
√
αt +

√
ᾱt−1

1 +
√
ᾱt︸ ︷︷ ︸

γ

Hence, the posterior mean will be

µ̃(ϕt, ϕ0, µ) = µ− γ µ+ γ1 ϕ0 + γ2 ϕt (A.4)

B. Solving for translation vector
We follow the equations provided in [2] to solve for the
translation vector. The diffusion model is trained to pro-
duce the dimensions D and orientation R of the bounding
box. Then, given the camera intrinsic parameters K, we
can find the translation vector for the bounding box. The
vertical side of the 2D bounding box corresponds to the ith

corner Xi
o of the 3D box, which can be written as,

xvertical = K

[
I R×Xi

o

0 1

]
Tx
Ty
Tz
1

 (B.1)

using the correspondence constraint and I is the identity ma-
trix. Similarly, for the horizontal lines we have the equation,

yhorizontal = K

[
I R×Xj

o

0 1

]
Tx
Ty
Tz
1

 , (B.2)

where the only unknowns are Tx, Ty, andTz . Next, we get
four equations corresponding to the four sides of the 2D
bounding box, and the constraints of Eq. (B.1) and Eq. (B.2)
are rearranged to have the form of a linear system of equa-
tions (Ax = 0)[2]. The solution is found with singular-
value decomposition.

C. 2D bounding box losses
To provide supervision from 2D bounding boxes, we project
the 3D bounding box parameters estimated at each time
step. However, intermediate time steps contain 3D box pa-
rameters that are noisy and sampled from latent distribu-
tions in the probability flow. Hence, we estimate the 0th

time step parameters from the generated parameters at each
time step. Since we already have the relationship between
ϕo and ϕt in Eq. (A.3), the relationship between ϕo and
ϕt−1 can be written as follows:

ϕt−1 = µ+
√
ᾱt−1 (ϕ0 − µ) +

√
1− ᾱt−1 σ ϵ̄0. (C.1)

Using Eq. (C.1) and Eq. (A.4) we write the relationship be-
tween ϕ̂t−1 and ϕ̂0 as

ϕ̂t−1 = µ− γ µ+ γ1 ϕ̂0 + γ2 ϕt

ϕ̂0 =
γ

γ1
µ+

ϕ̂t−1 − µ

γ1
− γ2
γ1
ϕt (C.2)
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