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Supplementary Material

A. More Experiment Analysis
A.1. The impact of model training details

Regarding how to train the optimal model, we also conduct
relevant research on batch sizes and model depth used in the
training process.

BatchSize we focus on examining the impact of various
batch sizes on the accuracy of the PARSeq-B model. This
investigation is integral to determining the model’s optimal
training conditions. The findings, as presented in Table 1,
reveal that the model reaches its optimal performance, with
an accuracy of 96.35%, when the batch size is configured
to 1024. This result corroborates the conclusions from the
CLIP4STR[33]. it is underscoring the significant role that
larger batch sizes play in enhancing model accuracy. No-
tably, it is also observed that an excessively large batch size
leads to a reduction in accuracy, indicating a critical balance
in batch size selection for optimal model training.

Model Backbone Batch Word Acc
PARSeq ViT-B 1344 96.28
PARSeq ViT-B 1024 96.35
PARSeq ViT-B 896 96.33
PARSeq ViT-B 448 96.3

Table 1. Average accuracy using different batch sizes on common
benchmarks, training data is the real dataset (3.3M).

Depth PARSeq is divided into encoder and decoder.
The encoder leverages the widely-recognized Vision Trans-
former (ViT) series, specifically employing the ViT-S vari-
ant. Conversely, the decoder is subject to more intricate
fine-tuning, particularly concerning its depth. This aspect
of the model architecture is a focal point of our research.

Our empirical investigations, as detailed in Table 2, cen-
tered on the interplay between the encoder’s ViT-S configu-
ration and varying depths of the decoder. The experimental
findings are revealing. With the encoder consistently utiliz-
ing ViT-S, we observe that setting the decoder’s depth to 1
layers resulted in optimal model accuracy. This suggests a
significant relationship between decoder depth and model
performance, underlining the importance of carefully cali-
brated model architecture in achieving high STR accuracy.
Our results contribute to a deeper understanding of the ar-
chitectural nuances in Transformer-based STR models and
their impact on performance.

A.2. Benefits of pretraining in different languages

In this supplementary section, we conduct a thorough ex-
amination of the impact of language-specific pretraining on

Model Encoder Decoder-Depth Word Acc
PARSeq ViT-S 1 95.56
PARSeq ViT-S 2 95.31
PARSeq ViT-S 3 94.77
PARSeq ViT-S 4 94.50
PARSeq ViT-S 5 93.77

Table 2. Average accuracy using different depth for decoder on
benchmark test set, training model in real dataset.

STR models, with a particular focus on fine-tuning for En-
glish datasets. Our approach involved utilizing models pre-
trained in Arabic, Latin, and a hybrid of Chinese-English,
each trained on a dataset comprising 300,000 entries drawn
from private sources. The core architecture for these mod-
els is based on the CMT-S framework, as detailed in Guo et
al. (2022) [9]. Subsequent secondary training is conducted
on the REB dataset, a subset of REBU-Syn, wherein dif-
ferent language-specific pretrained models are employed.
Notably, the final classification layer’s parameters are not
loaded from these pretrained models to ensure a fair com-
parison.

As illustrated in Table 4, our results reveal pronounced
improvements in models pretrained in Latin, Chinese, and
English, with Latin demonstrating the most substantial en-
hancement. This improvement is likely due to the visual
congruence between Latin and English scripts, emphasiz-
ing the STR models’ dependency on visual features for ef-
fective recognition. Meanwhile, the performance of models
pretrained in Chinese and English, though slightly lower by
a margin of 0.01% compared to the Latin model, indicates
a potential bias introduced by the inclusion of Chinese data
in the pretraining phase.

Intriguingly, models pretrained in Arabic does not ex-
hibit significant benefits over their non-pretrained counter-
parts. This can be attributed to the stark visual differences
between Arabic and English scripts, reinforcing the notion
that visual similarity plays a crucial role in the efficacy
of pretraining for STR tasks. Collectively, these findings
suggest that pretraining STR models with languages visu-
ally akin to the target language offers enhanced benefits.
Conversely, a pronounced visual dissimilarity between the
scripts negates the advantages of pretraining, a critical con-
sideration for the training models.

B. Comparisons on Union14M benchmark
To evaluate the generalization capabilities of our model,
we conducted an extensive assessment using the Union14M
benchmark dataset [12]. This benchmark is particularly



Method Training data Artistic Contextless Curve General Multi-Oriented Multi-Words Salient Avg
CRNN [24] MJ+ST 20.7 25.6 7.5 32.0 0.9 25.6 13.9 18.0
SVTR [7] MJ+ST 37.9 44.2 63.0 52.8 32.1 49.1 67.5 49.5

MORAN [19] MJ+ST 29.4 20.7 8.9 35.2 0.7 23.8 17.9 19.5
ASTER [25] MJ+ST 27.7 33.0 34.0 39.8 10.2 27.6 48.2 31.5
NRTR [23] MJ+ST 36.6 37.3 31.7 48.0 4.4 54.9 30.6 34.8
SAR [16] MJ+ST 42.6 44.2 44.3 50.5 7.7 51.2 44.0 40.6
DAN [28] MJ+ST 35.0 40.3 26.7 42.1 1.5 42.2 36.5 32.0

SATRN [14] MJ+ST 48.0 45.3 51.1 58.5 15.8 52.5 62.7 47.7
RobustScanner [32] MJ+ST 41.2 42.6 43.6 39.5 7.9 46.9 44.9 38.1

SRN [31] MJ+ST 34.1 28.7 63.4 46.3 25.3 26.7 56.5 40.1
ABINet [8] MJ+ST 43.3 38.3 59.5 55.6 12.7 50.8 62.0 46.0

VisionLAN [29] MJ+ST 47.8 48.0 57.7 52.1 14.2 47.9 64.0 47.4
MATRN [22] MJ+ST 43.8 41.9 63.1 57.0 13.4 53.2 66.4 48.4
CRNN [24] Union14M 31.9 39.3 18.9 58.1 4.3 21.5 15.1 27.0
SVTR [7] Union14M 50.2 63.0 70.5 74.7 66.6 42.6 71.4 62.7

MORAN [19] Union14M 44.3 51.1 42.4 42.9 12.4 36.8 41.0 38.7
ASTER [25] Union14M 39.2 47.9 37.4 64.4 12.5 34.5 30.2 38.0
NRTR [23] Union14M 51.8 65.1 47.9 72.9 39.1 51.4 40.1 52.6
SAR [16] Union14M 58.0 69.0 66.9 73.7 54.7 51.2 57.0 61.5
DAN [28] Union14M 47.0 56.6 44.6 66.7 22.1 39.8 41.5 45.5

SATRN [14] Union14M 64.3 71.1 73.0 78.8 64.7 47.4 69.2 66.9
RobustScanner [32] Union14M 58.7 72.7 64.2 73.5 52.8 47.8 56.9 60.9

SRN [31] Union14M 47.6 57.9 48.7 60.7 20.0 27.9 41.6 43.5
ABINet [8] Union14M 62.2 66.3 73.0 75.6 59.6 43.1 69.5 64.2

VisionLAN [29] Union14M 54.4 60.1 68.8 72.1 55.2 37.9 64.7 59.0
MATRN [22] Union14M 67.3 71.0 79.3 78.4 66.0 53.8 74.9 70.0

MAERec-S [12] Union14M-L 68.9 77.8 79.3 80.4 69.5 51.9 75.1 71.8
MAERec-B [12] Union14M-L 75.9 80.7 86.6 83.8 82.1 56.2 82.2 78.2

PARSeq-S [3] R 81.7 86.5 91.1 86.5 89.3 85.3 84.6 86.5
CLIP4STR-B [33] R 86.5 92.2 96.3 89.9 96.1 88.9 91.2 91.6
CLIP4STR-L [33] R 87.2 91.0 97.0 90.3 96.6 89.9 91.5 91.9

PARSeq-S* REBU-Syn 85.2 89.4 94.0 88.0 93.1 89.9 89.8 89.9
CLIP4STR-B* REBU-Syn 88.6 90.1 96.4 89.1 96.3 92.2 91.9 92.1
CLIP4STR-L* REBU-Syn 88.6 90.4 96.4 89.3 97.2 90.7 92.7 92.2

Table 3. Word accuracy on Union14M benchmark, * indicates training with REBU-Syn.

Pretrain Model Datasets Word Acc
From Scratch PARSeq REB 95.60

Arabic PARSeq REB 95.62
Cn-En PARSeq REB 95.81
Latin PARSeq REB 95.82

Table 4. Average accuracy using language-specific pretraining on
benchmark test set, training model in real dataset of REB.

comprehensive, encompassing a vast array of real-world
textual data, systematically categorized into seven dis-
tinct subsets: Artistic, Contextless, Curve, General, Multi-
Oriented, Multi-Words and Salient. The results of this
evaluation, presented in Table 3, demonstrate the model’s
robust and consistent performance across a range of sce-
narios. Notably, in comparative evaluations against stan-
dard benchmarks and the multifaceted Union14M dataset,
the CLIP4STR-L* model emerges as a standout performer.
This model demonstrates exceptional accuracy across the
majority of datasets. Its ability to consistently deliver high-
quality results, particularly in the context of the challeng-

ing Union14M benchmark, underscores its robustness and
versatility. Such performance highlights the efficacy of the
CLIP4STR-L* architecture in handling a diverse range of
textual data scenarios, making it a benchmark in the field.

C. Visulization Analysis

In Fig 1, we present a visualization of our model’s perfor-
mance across the seven major categories of the Union14M
benchmark. The results demonstrate that our model outper-
forms in the majority of datasets. However, a slight dip in
effectiveness is noted in the Contextless dataset. This can be
attributed to the limitations of the text encoder in processing
texts lacking semantic information.

Despite this, our model distinguishes itself from other
contemporary STR models through its enhanced ability to
accurately interpret and navigate a diverse range of com-
plex real-world scenarios. This advancement significantly
bolsters the robustness of STR models, enabling them to op-
erate with greater reliability in varied and challenging envi-
ronments. The enhanced robustness of our model not only



Figure 1. Error analysis of the Union14M benchmark. We select three representative models and show their prediction results (Text in
black represents correct prediction and red text vice versa).



showcases its technical excellence but also emphasizes its
practical applicability in real-world settings characterized
by high variability and complexity.

D. STR Enhanced LMM
In the realm of large-scale models, we observe a distinct
bifurcation into two primary categories: Large Language
Models (LLMs) and Large Multimodal Models (LMMs).
It is crucial to acknowledge that while LLMs are devoid
of a visual component, LMMs’ visual branches demon-
strate room for enhancement in terms of text recognition
capabilities[26]. This observation underscores the rela-
tive underdevelopment of text recogition proficiency within
large-scale models. Scene Text Recognition (STR) tasks,
however, offer a promising avenue to address this shortfall,
thereby motivating our investigation into the benefits of in-
tegrating STR models with these models.

Dataset and Metric Our analysis utilized a diverse
range of tasks from the Visual Question Answering
(VQA) series, specifically STVQA [4], TextVQA [27],
DocVQA [20] and InfoVQA [21]. While STVQA and
TextVQA are geared towards natural scenes, DocVQA and
InfoVQA focus on general document contexts. Here are
some details of evaluation dataset:
• STVQA contains 31K questions that require understand-

ing the scene text, based on 23K images from : IC-
DAR2013 and ICDAR2015, ImageNet [6], VizWiz [10],
IIIT Scene Text Retrieval, Visual Genome [13] and
COCO-Text.

• TextVQA contains 45K questions that need to read and
reason the text in images, based on 28K images from nat-
ural images.

• DocVQA contains 50K questions and 12K images from
industry documents.

• InfoVQA contains 30K questions that require under-
standing the document text, based on 5.4K images com-
bining textual, graphical and visual elements from Info-
graphics.

We employed the Average Normalized Levenshtein Simi-
larity (ANLS) as our evaluation metric, a standard in the
VQA domain.

Experiment Setting For the large-scale model, we se-
lected the recently unveiled Qwen-VL-chat [2], a state-of-
the-art multimodal model. In terms of STR, we utilized
Rosetta [5] for detection, and CLIP4STR-L* for recog-
nition. We began by concatenating the text recognized
through coordinate information to generate STR tokens.
These tokens, combined with the question, formed our
prompts. The prompt format was meticulously refined to:
’STR token: {ocrtokens}, please answer the following
questions based on STR tokens and pictures, {question}’.
This approach involved inputting both the prompt and im-
ages into the large-scale model.

Model STVQA TextVQA DocVQA InfoVQA
BLIP-2 [1] 21.7 32.2 4.9 -

LLaVAR [18] 39.2 48.5 11.6 -
InstructBLIP [17] - 50.7 - 38.3
LLaMA-7B [30] - 52.6 62.2 38.2

Pix2Struct-base [15] - - 72.1 38.2
Qwen-VL-Chat 50.25 61.5 63.41 31.7

Qwen-VL-Chat with STR 70.32 69.64 73.44 38.48

Table 5. Result on benchmarks for VQA tasks using LMM models
with or without STR, all result are ANLS on the val split.

Result and Analyze We performed a detailed compar-
ative analysis to assess the accuracy of the QWen-VL-chat
model, examining its performance with and without STR
integration, as delineated in Table 5. Our results reveal a
significant improvement in the accuracy of the model for
scene-based VQA tasks upon the integration of STR. Ad-
ditionally, there is a noticeable enhancement in document-
based VQA tasks. These findings suggest that the incorpo-
ration of STR not only enhances the model’s accuracy but
also extends its generalization capabilities across diverse
VQA scenarios. This evidence distinctly highlights the vital
role that STR inputs play in augmenting the performance of
LVLM for downstream tasks. Furthermore, the improved
accuracy with STR integration underscores the model’s en-
hanced ability to interpret and analyze combined visual and
textual data, thereby validating the efficacy of multimodal
approaches in tackling complex analytical challenges.

VQA Visulization Analysis Our visual analysis of
QWen-VL-Chat, with and without the STR module, across
varied datasets offers critical insights. In natural scene Vi-
sual Question Answering (VQA) tasks, QWen-VL-Chat en-
counters difficulties in detecting small text in images. The
upper left corner of Fig 2, the model overlooks pertinent
content, erroneously indicating its absence. Moreover, its
tendency to inaccurately complete blurred text stems from
its sophisticated linguistic abilities. This is evident in the
upper right corner of Fig 2, where ’dr’ in ’45th parallel
dr’ is incorrectly expanded to ’drive’. Notably, the model’s
text misidentification issues, such as converting ’honghe’ to
’Hongte’ on a cigarette pack as depicted in the lower left
corner of Fig 2 (mistaking the second ’h’ for a ’t’), are sig-
nificantly mitigated by integrating our STR module.

In general document scenarios involving dense textual
information, the performance of QWen-VL-Chat remains
suboptimal.In the left of Fig 3, when tasked with identi-
fying brands in advertisements amidst extensive text, the
model erroneously generates non-existent words from the
image. Incorporating STR crucially directs the model to-
wards accurate text recognition. This pattern is consistent
in table-based VQA Tasks in the right of Fig 3, where the
model frequently errs in its responses. The inclusion of STR
proves instrumental in steering the model towards correct
answers. This comprehensive analysis highlights the pivotal
role of STR in augmenting LMM models’ comprehension



Figure 2. Visual anwer comparison for QWen-VL-Chat with or without STR tokens in natural scenes VQA.

Figure 3. Visual anwer comparison for QWen-VL-Chat with or without STR tokens in Document VQA.

and recognition capabilities within intricate visual-textual
contexts.

E. Scaling law algorithm description

We formalize the power law of performance in terms of
scaling factors, and the implemented details are shown in
Algorithm 1.

F. The scaling law on Union14M benchmark

We supplement the experiments with scaling laws on the
Union14M benchmark. The parameters and accuracy of
PARSeq-(S/B/L) and CLIP4STR-(S/B/L) on the Union14M
benchmark are shown in Table 6 and Table 7 respectively.
The curves of scaling law on CLIP4STR and PARSeq mod-
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Figure 4. Left: PARSeq-(S/B/L) results on Union14M. Right:
CLIP4STR-(S/B/L) results on Union14M.

els are shown in Fig 4. It demonstrates that the scaling law is
still applicable on the Union14M benchmark.

G. Applicability in document contexts

We also validate the power law using scaling model sizes
on Moreover, apart from applying the STR benchmark, we



Algorithm 1: the power-law function
input : x-axis data for data volume, model size

or compute time X , word error rate E.
output: a0, a1 are the coefficients of the power

law function E(·) = (a0 ∗X)a1 , v is
used to determine whether the power law
holds.

1 X ′ ← logX , E′ ← logE;
2 define LineFunc(X ′, E′) = k ∗X ′ + b;
3 for i← 1 to t− 1 do
4 Use the first t-1 points to fit the straight line

equation LineFunc(X ′, E′) and obtain the
coefficients, k and b.

5 end
6 // Replace (X ′, E′) in the straight line formula
LineFunc with (X,E) to obtain the coefficients
(a0, a1) of the power law function
E(·) = (a0 ∗X)a1 .

7 (a0, a1)← logE = k ∗ logX + b

8 // Verify that (Xt, Et) is on the equation of the
power law function E(·) = (a0 ∗X)a1 .

9 Epred
t ← (a0 ∗Xt)

a1 ;
10 dev ← Epred

t − Et ;
11 if dev < 0.1 then v ← 1;
12 else v ← 0;

Method Param (M) Avg
PARSeq-S 22.5 89.89
PARSeq-B 104.0 90.37
PARSeq-L 335.9 90.81

Table 6. Word accuracy with different model sizes of PARSeq.
Test data: Union14M.

Method Param (M) Avg
CLIP4STR-S 43.6 91.90
CLIP4STR-B 86.7 92.08
CLIP4STR-L 268.2 92.19

Table 7. Word accuracy with different model sizes of CLIP4STR.
Test data: Union14M.

further extend the application of the scaling law to a doc-
ument dataset in order to authenticate its validity and reli-
ability. The FUNSD [11] dataset contains a large number
of scanned documents, and each sample is annotated with
detailed text, word bounding boxes, and structured tags.
It is intended to support the development and assessment
of model performance by researchers for the purpose of
processing and comprehending information from scanned
documents in noisy, real-world. Notably, CLIP4STR-L*
achieved a SOTA accuracy of 96.5%, surpassing the pre-

vious best, CLIP4STR-L. The experimental results are
shown in Table 8. These results highlight the robustness of
CLIP4STR-L* in both scene and document text recognition
tasks.

Model Word Acc
CLIP4STR-L 96.02
CLIP4STR-L* 96.50

Table 8. Accuracy for CLIP4STR-L on FUNSD. * indicates train-
ing with REBU-Syn.
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