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A. Experimental Details
A.1. Datasets
CIFAR-10 LT and CIFAR-100 LT. We use the imbalanced
CIFAR-10 and CIFAR-100 datasets with an exponential de-
cay in sample size across classes. This decay is guided by
the Imbalance Ratio (⇢ = maxi Ni

minj Nj
). For our experiments on

CIFAR-10 LT and CIFAR-100 LT, we show the results on
⇢ = 100 and ⇢ = 50. CIFAR-10 LT comprises 12,406 train-
ing images across 10 classes (⇢ = 100). Out of the 10 classes,
the first 3 classes are considered Head classes with more
than 1500 images per class, the following 4 classes are Mid
(medium) classes with more than 250 images each class, and
the last 3 classes account for the Tail classes, with each class
containing less than 250 images each. Following a similar
decay, the 100 classes of CIFAR-100 LT (10,847 training
samples with ⇢ = 100) are also divided into three subcate-
gories: the first 36 classes are considered as the Head classes,
Mid contains the following 35 classes, and the remaining
29 classes are labeled as Tail classes. Both CIFAR-10 LT

and CIFAR-100 LT datasets are evaluated on held-out sets
of 10,000 images each, equally distributed across all classes.
ImageNet-LT. We use the standard LT dataset created out of
ImageNet [42]. ImageNet-LT consists of 115,846 training
images, with 1280 images in the class with the most images
and 5 images in the class with the least images. Out of
the 1,000 classes sorted in the descending order of sample
frequency, we consider classes with more than 100 samples
as Head classes, the classes with samples between 20 and
100 to be Mid classes and the classes with less than 20
samples as the Tail classes as done in Cui et al. [8].
iNaturalist-2018. iNaturalist-2018 [52] is a real-world im-
balanced dataset with 437,513 training images. Out of the
8,142 classes sorted in the descending order of sample fre-
quency, we consider classes with more than 100 samples as
Head classes, the classes with samples between 20 and 100
to be Mid classes and the classes with less than 20 samples
as the Tail classes, similar to ImageNet-LT.

A.2. Training Configuration
In this subsection, we detail the strategies adopted to
train DeiT-LT Base (B) model on four benchmark datasets,
namely CIFAR-10 LT, CIFAR-100 LT, ImageNet-LT, and
iNaturalist-2018. We use the AdamW optimizer to train
DeiT-LT from scratch across all the datasets. These runs use
a cosine learning rate decay schedule with an initial learn-
ing rate of 5⇥10�4. All the runs use a linear learning rate
warm-up schedule for the initial five epochs. Furthermore,
we deploy label smoothing with " = 0.1 for all our experi-
ments where the ground truth labels are used to train the CLS
expert. Under label smoothing, the true label is assigned a
(1�") probability, and the remaining " is distributed amongst
the other labels. We use hard labels as distillation targets
from the teacher network to train the DIST expert classifier
via distillation from CNN teacher (Fig. 2). For training the
teacher networks with SAM optimizer, we follow the setup
mentioned in [38]
CIFAR-10 LT and CIFAR-100 LT : We train DeiT-LT
for 1200 epochs on imbalanced versions of CIFAR datasets.
DRW loss is added to the training of the DIST expert classi-
fier after 1100 epochs. Mixup and Cutmix are used during
the initial 1100 epochs of the training. As suggested in [48],
we use Repeated Augmentation to improve the performance
of the DeiT-LT training. The (32⇥ 32) images of CIFAR
datasets are resized to (224 ⇥ 224) before feeding into the
transformer architecture. For CIFAR-10 LT and CIFAR-100
LT datasets, ResNet-32 is used as the teacher network. The



Table S.1. Summary of our training procedures used to train DeiT-LT Base (B) from scratch on CIFAR-10 LT, CIFAR-100 LT, ImageNet-LT
and iNaturalist-2018.

Procedure CIFAR-10 LT CIFAR-100 LT ImageNet-LT iNaturalist-2018

Epochs 1200 1200 1400 1000
Optimizer AdamW AdamW AdamW AdamW

Effective Batch Size 1024 1024 2048 2048
LR 5⇥10�4 5⇥10�4 5⇥10�4 5⇥10�4

LR schedule cosine cosine cosine cosine
Warmup Epochs 5 5 5 5

DRW starting epoch 1100 1100 1200 900

Mixup (↵) 0.8 0.8 0.8 0.8
Cutmix (↵) 1.0 1.0 1.0 1.0

Mixup and Cutmix during DRW ⇥ ⇥ X X
Horizontal Flip X X X X

Color Jitter X X X X
Random Erase X X ⇥ ⇥

Label smoothing 0.1 0.1 0.1 0.1
Solarization ⇥ ⇥ X X

Random Grayscale ⇥ ⇥ X X
Repeated Aug X X ⇥ ⇥

Auto Aug X X ⇥ ⇥

teacher is trained from scratch on these imbalanced datasets
using LDAM+DRW+SAM [38] and contrastive PaCo+SAM
(training PaCo [8] with SAM [13] optimizer) frameworks.
The input images to the teacher are of size (32⇥ 32), with
the same augmentation used as input images to the teacher
network during DeiT-LT training.

ImageNet-LT and iNaturalist-2018. DeiT-LT is trained
from scratch for 1400 epochs on ImageNet-LT and for 1000
epochs on iNaturalist-2018. DRW loss for distillation head
(DIST expert classifier) is initialized from epochs 1200
and 900 for ImageNet-LT and iNaturalist-2018, respectively.
Mixup and Cutmix are used throughout the training, includ-
ing the DRW training phase. More details regarding the
training configuration can be found in Table S.1.

For the ImageNet-LT and iNaturalist-2018 datasets, the
ResNet-50 teacher is trained from scratch on the respective
datasets using the LDAM+DRW+SAM [38] and contrastive
PaCo+SAM (training PaCo [8] with SAM [13] optimizer)
methods. The input image size is (224 ⇥ 224) for both the
student and teacher network.

A.3. Additional Baselines

We want to highlight that we attempted training baselines,
like LDAM for vanilla ViT. However, we find that the LDAM
baseline (52.75%) performs inferiorly to the vanilla ViT base-
lines (62.62%). We find that the loss for the LDAM baseline
gets plateaued very early, and the model does not fit to the
training dataset (Fig. S.1). To make the comparison fair with

DeiT baselines, we used similar augmentation and other hy-
perparameters for the ViT Baselines. We think this can be
one reason for the non-convergence of the ViT-LDAM base-
line. We find that similar abysmal performance for LDAM
baseline is also reported by the recent work [59], which also
resonates with our finding. We think that investigation into
this behavior is a good direction for future work.

Additionally, for a fair comparison, we do not compare
against baselines that use pre-training for long-tailed recog-
nition tasks. RAC [46] uses a ViT-B encoder for their re-
trieval module with weights obtained from pre-training on
ImageNet-21K. The authors do not report on small-scale
datasets, as they acknowledge the unfair advantage of using
the information present in the pretrained encoder. Similarly,
for small-scale datasets, LiVT [58] method pretrains the en-
coder via Masked Generative Pretraining on ImageNet-1k.
On the contrary, our DeiT-LT method enables training ViT
from scratch for both small-scale and large-scale datasets.

A.4. Augmentations for OOD distillation

While both DeiT and our DeiT-LT pass images with strong
augmentations to the teacher network for distilling into the
student network, the set of augmentations used to train the
teacher network itself differs between the two approaches.
DeiT first trains a large teacher CNN (RegNetY-16GF) using
the same set of strong augmentations as that used for the stu-
dent network. However, we find that distilling from a small
teacher CNN (such as ResNet32) trained with weak aug-



Figure S.1. Comparison of training loss for vanilla ViT and
ViT+LDAM training on CIFAR-10 LT

mentations gives better performance (see Sec. 3.1) for more
details). Table S.2 compares the augmentations used to train
the teacher for DeiT (RegNetY-16GF) and for our method
DeiT-LT. Our experiments use ResNet32 as the teacher net-
work for CIFAR-10 LT and CIFAR-100 LT, and ResNet50
for the Imagenet-LT and iNaturalist-2018 datasets. For the
PaCo teacher, we utilize the mildly strong augmentations
used by the PaCo [8] method itself. We would like to convey,
that the PaCo training does not utilize the Mixup and CutMix
augmentation in particular while training, which helps us to
create OOD samples for this using Mixup and CutMix itself.
Distilling via out-of-distribution (OOD) images enables the
student to learn the inductive biases of the teacher effectively.
This is particularly helpful in improving the performance on
the tail classes that have significantly fewer training images.

B. Detailed Results
Performance of individual experts: Our approach focuses
on training diverse experts, where the CLS expert classifier
is able to perform well on Head (majority) classes, while
the DIST expert classifier is able to perform well on the Tail
(minority) classes. By averaging the output of the individual
classifiers, we are able to exploit the benefit of both.

In this portion, we discuss the individual performance of
the CLS and DIST expert classifiers of our proposed DeiT-
LT method on CIFAR-10 LT, CIFAR-100 LT, ImageNet-LT,
and iNaturalist-2018. As can be seen in Table S.3 and Ta-
ble S.4, the CLS and DIST classifiers give a contrasting
performance on the head and tail classes, supporting our

Table S.2. Comparing augmentation used to train RegNetY-16GF
(teacher for DeiT training) and ResNet32 (teacher for DeiT-LT
training) for CIFAR-10 LT.

RegNetY-16GF ResNet32Procedure (Strong) (Weak)

Image Size 224⇥224 32⇥32
Random Crop X X

Horizontal Flip X X
Mixup (↵) 0.8 ⇥
Cutmix (↵) 1.0 ⇥
Color Jitter 0.3 ⇥

Random Erase X ⇥
Auto Aug X ⇥

Repeated Aug X ⇥

claim of expert classifiers. For CIFAR-10 LT (⇢ = 100), the
CLS expert classifier is able to report an accuracy of 96.5%
on images of the head classes, whereas the DIST expert
classifier settles with 72.8% on the same set of classes. On
the other hand, the DIST expert classifier reports 93.0% ac-
curacy on the tail classes, which is almost 33% more than
that of the CLS expert classifier. Like CIFAR-10 LT, the
CLS expert classifier performs better on the head classes of
CIFAR-100 LT (⇢ = 100) than the DIST, whereas the DIST
expert classifier reports much higher accuracy on the tail
classes. The CLS classifier achieves an accuracy of 73.7%
on the head classes, and the DIST expert classifier secures
43.1% accuracy on the tail classes. We notice that by averag-
ing the output of the classifiers, we are able to report good
performance in both the majority and the minority classes.
CIFAR-10 LT reaches an overall accuracy of 87.3%, with
93.8% on head classes and 85.7% on tail classes. Similarly,
with 72.8% on the head and 31.0% on the tail, DeiT-LT
is able to secure an overall 54.8% on CIFAR-100 LT. The
results demonstrate that there is a parallel trend in the perfor-
mance of experts for both CIFAR-10 LT and CIFAR-100 LT
when ⇢ is set to 50.

A similar trend is seen for large-scale ImageNet-LT and
iNaturalist-2018 in Table S.4. For ImageNet-LT, the CLS
expert classifier reports 68.3% accuracy on the head classes,
which is approximately 11% more reported by the DIST
expert classifier. At the same time, we observe that the
DIST expert classifier is able to get an accuracy of 46.6% on
the tail, which is significantly higher than the 13.5% of the
CLS expert classifier. For iNaturalist-2018 as well, the CLS
expert classifier achieves a high accuracy of 73.8% on the
head classes, and the DIST expert classifier reaches 77.0%
on the tail classes. After averaging the outputs of the two
classifiers, DeiT-LT reports an overall accuracy of 59.1%
for ImageNet-LT and 75.1% for iNaturalist-2018, which
would not have been possible by training a standard Vision



Table S.3. Accuracy of expert classifiers on Head, Mid, and Tail classes for CIFAR-10(100) LT.

CIFAR-10 LT CIFAR-100 LT
Imbalance Expert Overall Head Mid Tail Overall Head Mid Tail

Average 87.3±0.10 93.8±0.33 83.7±0.26 85.7±0.33 54.8±0.42 72.8±0.16 55.9±0.51 31.0±0.73

CLS 78.6±0.15 96.5±0.06 79.4±0.39 59.7±0.20 43.3±0.39 73.7±0.19 41.7±0.73 7.5±0.26100
DIST 79.9±0.31 72.8±0.92 75.4±0.18 93.0±0.15 42.5±0.48 39.3±1.64 45.1±0.47 43.1±0.33

Average 89.9±0.17 94.5±0.18 87.2±0.26 88.8±0.34 60.6±0.03 74.6±0.10 60.5±0.10 43.1±0.06

CLS 84.1±0.33 96.5±0.12 83.3±0.66 72.8±0.55 49.6±0.21 76.0±0.31 50.5±0.46 15.9±0.4150
DIST 83.2±0.23 74.6±0.51 81.8±0.21 93.6±0.08 48.0±0.20 44.0±0.25 48.4±0.36 52.6±0.07

Table S.4. Accuracy of experts on Head, Mid and Tail classes for ImageNet-LT and iNaturalist-2018.

ImageNet-LT iNaturalist-2018
Expert Overall Head Mid Tail Overall Head Mid Tail

Average 59.1 66.7 58.3 40.0 75.1 70.3 75.2 76.2

CLS expert classifier 47.5 68.3 40.0 13.5 65.6 73.8 65.8 63.1

DIST expert classifier 56.4 57.2 58.6 46.6 72.9 56.1 73.2 77.0

Transformer (ViT) with a single classifier.

C. Comparison with CLIP based methods
Recently, some approaches such as VL-LTR [46] and PEL
[43] have adopted a pre-trained CLIP backbone to address
long-tailed recognition challenges. As indicated originally,
and also reinforced by [57], CLIP is trained on large-scale
balanced dataset (400 M Image-Text pair). As there is a lot of
overlapping concepts between balanced CLIP data and long-
tailed datasets (ImageNet-LT and iNat-18), the performance
of the CLIP fine-tuned methods does not indicate meaningful
progress on long-tail learning tasks, as CLIP has already
seen tail concepts in abundance. Due to this unfairness in
training datasets used, we refrain from comparing the CLIP
fine-tuned models (i.e., VL-LTR, PEL etc.) with DeiT-LT
models trained from scratch.

D. Visualization of Attention
To demonstrate the effect of distillation in DeiT-LT, we vi-
sualize the attention of baseline methods on ImageNet-LT
without distillation (ViT and DeiT-III) and compare it with
DeiT-LT. As DeiT-LT contains both the DIST token and the
CLS token, for visualization we average the attention across
both. We use the Attention Rollout [45] method for visual-
ization. Fig. S.2 shows the result of attention for different
methods. It can be clearly observed that DeiT-LT is able to
localize attention at the correct position of objects, across

almost all cases. We find that DeiT-III attention maps are
better in comparison to ViT, but it also often gets confused
(eg. Bell Pepper, Sea Snake etc.) compared to DeiT-LT.

E. Statistical Significance of Experiments
In this section, we present the results of our experiments on
CIFAR-10 LT and CIFAR-100 LT (⇢ = 100, 50)(as in Ta-
ble S.3), with three different random seeds. In Table S.3, we
report the average performance of the expert classifiers along
with the standard error for each. The low error demonstrates
that the DeiT-LT training procedure is stable and quite robust
across random seeds.

F. Details on Local Connectivity Analysis
We compute the mean attention distance for samples of tail
classes (i.e. 7,8,9 class for CIFAR-10) using the method
proposed by Raghu et al. [36]. For each head present in self-
attention blocks, we calculate the distance of the patches it
attends to. More specifically, we weigh the distance in the
pixel space with the attention value and then average it. This
is averaged for all the images present in the tail classes. We
utilize the code provided here as our reference 1. We show in
Fig. 4b that for early blocks (1 and 2) of ViT, the proposed
DeiT-LT method contains local features. As we go from ViT
to distilled DeiT to proposed DeiT-LT, we find that features

1https://github.com/sayakpaul/probing-vits
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Figure S.2. Visual comparison of the attention maps from ViT-B, DeiT-III [51] and DeiT-LT (ours) on the ImageNet-LT dataset, computed
using the method of Attention Rollout [1].

become more local, which explains the generalizability of
DeiT-LT for tail classes. To further confirm our observations,
we also provide local connectivity plots for the tail classes
of the CIFAR-100 dataset (Fig. S.3). We observe that DeiT-
LT produces highly local features. Further, we find that
the DeiT baseline (Table 2), which is inferior to ViT for
CIFAR-100, shows the presence of global features. Hence,
the local connectivity correlates well with generalization
on tail classes. The correlation of locality of features to
generalization has also been observed by [36], who find
that using the ImageNet-21k dataset for pre-training leads
to more local and generalizable features in comparison to
networks pre-trained on ImageNet-1k data.

G. Distilling low-rank features
In our proposed method, as the DIST token serves as the
expert on tail classes, it is important to ensure that it learns
generalizable features for minority classes that are less prone
to overfitting. As stated in [3], training a network with SAM
optimizer leads to low-rank features. In this subsection, we
investigate the feature rank of the DIST token that is distilled
via a SAM-based teacher.
Calculating Feature Rank. Consider two sets of images
Xall,Xmin ⇢ X , where Xall,Xmin refer to the set of images
from all the classes and minority (tail) classes, respectively,
with X being the set of all images. We construct feature
matrices F all

nh,d
and Fmin

nt,d
, where nh and nt are the num-

ber of images in Xall and Xmin respectively, and d is the

Figure S.3. Mean attention distance for early blocks (1,2) for
CIFAR-100 LT tail training images.

dimension of the feature representation from DIST token.
Upon centering the columns of F all

nh,d
, we decompose

the feature matrix as U, S, V T = SVD(F all
nh,d

), and project
Fmin
nt,d

using the right singular vectors V as

Fmin
proj (k) = Fmin

nt,d ⇤ Vk

where Vk contains the top k singular vectors (principal
componenets). We calculate our rank as the least k that



(a) Rank of ViT from Distillation of CNN teachers using CLS token (b) Rank of ViT from Distillation of CNN teachers using DIST token

Figure S.4. We compare the rank calculated using features from the a) CLS token and b) DIST token when trained on CIFAR-10 LT. Our
DeiT-LT captures both fine-grained features (from high-rank CLS token) and generalizable features (from low-rank DIST token).

Figure S.5. Validation Accuracy Plots for the ImageNet-LT (left) and CIFAR-100 LT (right). It can be observed that DeiT-LT trained with
SAM teachers converges faster than vanilla teachers.

satisfies

||Fmin
nt,d

� Fmin
recon(k)||

2

||Fmin
nt,d

||2
 0.01

where Fmin
recon(k) is an approximate reconstructed feature

matrix given by Fmin
recon(k) = Fmin

proj (k) ⇤ Vk
T .

As shown in Fig. S.4b, we find that the DIST token
trained with a SAM-based teacher reports a lower rank.
As we are able to use the same principal components to
represent both the majority and minority classes’ feature
representation, it signifies that the DIST token learns gener-

alizable characteristics relevant across different categories
of images in an imbalanced dataset. By learning semantic
similar features, our training of DIST token ensures good
representation learning for minority classes by leveraging
the discriminative features learned from majority classes.

On the other hand, we observe that CLS token learns
high-rank feature representations (Fig. S.4a), signifying that
it captures intricately detailed information. Our DeiT-LT,
thus, captures a wide range of information by using the
predictions made using both fine-grained details from CLS
token and generalizable features from DIST token.



G.1. Convergence Analysis with SAM Teachers
We find that models distilled from the teachers trained using
SAM [13] converge faster than the usual CNN teachers. We
provide the analysis for the Deit-LT(PaCo+SAM) and DeiT-
LT(PaCo) on the ImageNet-LT and CIFAR-100 datasets in
Fig. S.5. We observe that models with SAM, coverage much
faster, particularly for the ImageNet-LT dataset, demonstrat-
ing the increased convergence speed for the distillation. This
can be attributed to the fact that low-rank models are simpler
in structure and are much easier to distill to the transformer.

H. Computation Requirement
For training our proposed DeiT-LT method on CIFAR-10 LT
and CIFAR-100 LT, we use two NVIDIA RTX 3090 GPU
cards with 24 GiB memory each, with both datasets requiring
about 15 hours to train to train the ViT student. We train the
DeiT-LT student network on four NVIDIA RTX A5000 GPU
cards for the large-scale ImageNet-LT dataset and on four
NVIDIA A100 GPU cards for the iNaturalist-2018 dataset,
in 61 and 63 hours, respectively.
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