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1. Table of Contents:
In the Supplementary Material, we provide additional infor-
mation about:
• The qualitative results of our AV-RIR via a supplementary

video1.
• Quantitative comparison of AV-RIR on far-field Auto-

matic Speech Recognition with other baselines.
• Additional details on our datasets and baselines used for

evaluation.
• Additional details of our user study.
• Information about Societal Impact of AV-RIR.

1.1. Supplementary Video

We provide a supplementary video showing the qualita-
tive results of RIR estimation with AV-RIR when applied
to three different tasks. In addition, we compare the en-
hanced speech from our AV-RIR with ground truth clean
speech. We also demonstrate our approach’s failure cases
in the supplementary video.

The RIRs estimated from our approach are evaluated in
three practical tasks, that are:
Novel View Acoustic Synthesis : In the novel view acous-
tic synthesis task, given the audio-visual input from the
source viewpoint, we modify the reverberant speech from
the source viewpoint to sound as if it is recorded from the
target viewpoint. We use reverberant speech as audio input,
and the panoramic image and our proposed Geo-Mat fea-
ture as our visual input. We use SoundSpaces [4] dataset to
perform this task.

To perform this task, we estimate the enhanced speech
using audio-visual input from the source viewpoint. We es-
timate the RIR corresponding to the target viewpoint from
audio-visual input. We convolve the enhanced speech from
the source viewpoint with RIR from the target viewpoint to
make the speech from the source viewpoint sound as if it is
recorded from the target viewpoint.
Visual-Acoustic Matching : In the visual-acoustic match-
ing task, we resynthesize the speech from the source en-
vironment to match the target environment. We combine

1https://www.youtube.com/watch?v=tTsKhviukAE

the enhanced source environment speech from AV-RIR and
the estimated RIR from the target environment to perform
this task. Convolving the estimated RIR with clean speech
leads to synthesizing speech from the source environment
to match the target environment. All our experiments on
this task are performed on the SoundSpaces [4] dataset.
Voice Dubbing : Voice dubbing is replacing dialogue in
one language with another in a video. Voice dubbing is
commonly used to dub movies from one language to an-
other. To test the robustness of RIR estimation from our
AV-RIR, we estimated RIR using our AV-RIR on recorded
video clips on YouTube. We chose two English video clips
in the AVSpeech dataset [10]. We dubbed the video clips
with French clean speech from Audiocite [1]. We convolved
the French clean speech with the estimated RIR from the
YouTube clip to match the room acoustics of French dia-
logue with the original English dialogue. We replaced the
English dialogue with modified French dialogue using our
approach.

1.2. Far-field Automatic Speech Recognition

In order to evaluate the effectiveness of RIR estimated from
our AV-RIR, we performed a Kaldi Far-field Automatic
Speech Recognition (ASR) experiment using a modified
KALDI ASR recipe2. For our experiment, we use the AMI
corpus [2]. The AMI corpus has 100 hours of meeting
recording. The meeting is recorded using both an individual
headset microphone (IHM) and a single distant microphone
(SDM). The IHM data has a high signal-to-distortion ratio
when compared to the SDM data. Therefore, IHM data can
be considered as clean speech.

To evaluate the benefit of RIRs estimated from our AV-
RIR, we take a subset of SDM data with 300 speech samples
and estimate the RIRs of the subset of SDM data. We cre-
ate synthetic reverberant speech data by convolving clean
speech from IHM data with the estimated RIR. We train the
KALDI ASR recipe with and without modifying the IHM
using our audio-only AV-RIR. We evaluated the audio-only
version of our AV-RIR because there are no corresponding

2https://github.com/RoyJames/kaldi-reverb/tree/
ami/
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Table 1. Far-field ASR results. We train the Kaldi ASR recipe with
and without modified IHM data and test on SDM data. We modify
the IHM data by convolving RIR estimated using our audio-only
AV-RIR.

Training Dataset Word Error Rate ↓ [%]
IHM without Modification 64.2
IHM ⊛ AV-RIR (ours) 52.1

visual inputs in the AMI corpus. We test the trained model
on far-field SDM data. We use word error rate as our met-
ric to evaluate the performance of the speech recognition
system. A lower word error rate indicates improved perfor-
mance.

Modifying IHM data using our audio-only AV-RIR will
bridge the domain gap between the training and test data.
From Table 1 we can see that modifying the IHM data with
our audio-only AV-RIR improves the word error rate by
12%.

1.3. Additional details on our datasets and baselines

1.3.1 SoundSpaces dataset:

We trained and test our network on SoundSpaces
dataset [4]. The SoundSpaces dataset comes with a non-
overlapping clean speech from the LibriSpeech dataset [16]
and synthetic reverberant speech. The synthetic reverberant
speech is simulated using the geometric acoustic simulator
in the SoundSpaces platform [4, 6] for 82 Matterport [3]
3D environments. SoundSpaces can simulate highly realis-
tic RIR for any arbitrary camera views and microphone po-
sitions by considering direct sounds, early reflections, late
reverberations, material and air absorption properties, etc.
The panoramic images in the SoundSpaces dataset contain
3D humanoids of the same gender as the speaker in each
data. In some data, the speaker is out of view and will not
be visible in the panoramic image. The sound spaces dataset
has 49,430/2700/2,600 train/validation/test samples respec-
tively.

1.3.2 AVSpeech Web Video dataset:

To evaluate the robustness of our approach, we evaluate our
RIR estimation and Speech enhancement approach using a
subset of 1000 speeches in AVSpeech dataset [10] proposed
in Visual Acoustic Matching paper [5]. The filtered dataset
contains 3-10 seconds YouTube clips with reverberant audio
recordings. Also, the filtered dataset microphone and the
camera are co-located and placed at a different position than
the sound sources. The cameras in the filtered videos are
static.

1.3.3 Speech enhancement baselines:

MetricGAN++[11]: MetricGAN++ is an improvised ver-
sion of the MetricGAN framework where the discriminator
network is trained with noisy speech. We use the imple-
mentation of MetricGAN in Speechbrain for our compari-
son [17].
DEMUCS [9]: DEMUCS is the music source separa-
tion architecture in the time-domain modified into a time-
domain speech enhancer. DEMUCS can work in real-time
on consumer-level CPUs.
HiFi-GAN [19]: HiFi-GAN is GAN-based architecture
trained on multi-scale adversarial loss in both the time do-
main and time-frequency domain to enhance real-world
speech recording to studio quality.
WPE [15]: WPE is a statistical model-based speech dere-
verberation approach. WPE can perform dereverberation by
removing late reverberation in a reverberant speech signal.
VoiceFixer [14]: Voice-fixer is a two-stage speech derever-
beration approach. The analysis stage of the VoiceFixer is
modelled using ResUNet and the synthesis stage is mod-
elled using TF-GAN.
SkipConvGAN [13]: SkipConGAN is the GAN-based
speech enhancement architecture where the Generator net-
work estimates the complex time-frequency mask and the
discriminator network helps to restore the formant structure
in the synthesized enhanced speech.
Kotha et al. [12]: This speech enhancement network inte-
grates the complex-valued TFA module with the deep com-
plex convolutional recurrent network to improve the overall
speech quality of the enhanced speech.
VIDA [7]: VIDA is the audio-visual speech dereverbera-
tion network that enhances reverberant speech. Visual input
gives valuable information about the room geometry, mate-
rials and speaker positions.
AdVerb [8]: Adverb is a geometry-aware cross-modal
transformer architecture, that predicts the complex ideal ra-
tio mask. Clean speech is estimated by applying the com-
plex ideal ratio mask to reverberant speech.

1.4. Additional details on User Study

We performed our user study on 50 participants. We only
allow participants to perform the survey on a laptop or desk-
top with headphones to get accurate results. Among the
50 responses, we filtered out noisy responses from our first
questions. In the first question, we ask the participants
which of the three synthetic reverberant speech matches
closely to the ground-truth speech. We place ground truth
speech among the synthetic speech and expect the partici-
pants with good hearing to choose the ground truth speech.
We only counted the responses of 43 participants who chose
the ground truth speech.



Figure 1. User study interface. We created 3 synthetic speech using our AV-RIR, Image2Reverb [18] and Visual Acoustic Matching [5]
and asked the participants, which synthetic reverberant speech matches closely with ground-truth reverberant speech. For each question,
we randomly shuffle the order of the synthetic reverberant speech from different approaches.

Out of 50 participants, 33 are male and 17 are female.
The six participants are aged between 18-24 years, 28
participants are between 25-34 years and 16 participants
are older than 34 years. Figure 1 shows the second question
from our user study interface.

1.5. Societal Impact

Our model to estimate the RIR and enhance speech can have
positive impacts on real-world applications. For example,
the model can give an immersive experience in AR/VR ap-
plications and improve voice dubbing in movies. Also, our
can be useful for different speech processing applications
such as automatic speech recognition systems, telecommu-
nication systems etc. We trained and evaluated our network
on open-sourced publicly available datasets.

We got the certification and license to perform user stud-
ies from the Institutional Review Board and we followed
their protocols. We did not collect any personal information
from the participants.
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