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In this supplementary material, we provide additional in-
formation about model analysis and experimental results of
Composite Fusion Attention Transformer (CFAT). We dis-
cuss the performance of our architecture and its variants
along with their complexity in Sec. 1. In Sec. 2, we
present the extensive results of an ablation study related to
CFAT. We also compare the proposed model with various
transformer-based state-of-the-art architectures graphically
and based on LAM score [2] in the Sec. 3.

1. Extensive Model Analysis

We examine how the performance of our model varies
alongside changes in complexity under two different set-
tings: (i) channel size variation and (ii) model size varia-
tion. All the performances are evaluated on the BSD100
dataset for a scale of x4. In the first setting, we evaluate the
complexity and the performance by increasing the value of
channel counts from 96 — 144 — 180 — 192 as shown in
Tab. 1. We observe a significant rise in performances (both
PSNR and SSIM) when we widen the channel counts from
96 — 144 — 180. However, it comes with a computational
burden in terms of parameter counts and Multiply-Add op-
erations. After 180, we observe a saturation in performance,
e.g., only a 0.01dB improvement in PSNR when the channel
is increased from 180 to 192.

After the channel-centric evaluation of CFAT, we set the
channel count to 180 in our final model and compared it
with various state-of-the-art architectures of the same chan-
nel count, as shown in Fig. 1. CFAT achieves the best per-
formance and also maintains an excellent trade-off between
parameter count and number of multiply-add operations.
The Multiply-Add operations in HAT [1] and ART [6] are
too high with moderate parameter counts, whereas SwinIR
[4], EDT [3], and ACT [5] show the opposite trends. We
observe an identical performance exhibited by ACT, ART,
and HAT with little variations whereas the outcomes from
EDT and SwinlR are comparively lesser.

We consider Dense Window Attention Blocks (DWAB)
and Sparse Window Attention Blocks (SWAB) to be the ba-

Table 1. Analysis of CFAT based on channel counts.

Channels Params (M) Multi-Adds (G) PSNR/SSIM

192 25.01 102.6 28.18dB/0.7524
180 22.07 90.59 28.17dB/0.7524
144 14.35 59.22 27.99dB/0.7504
96 6.74 28.18 27.78dB/0.7469

Table 2. Analysis of CFAT based on model size.

Models Params (M) Multi-Adds (G) PSNR/SSIM

CFAT-1 34.89 142.08 28.25dB/0.7531
CFAT 22.07 90.59 28.17dB/0.7524
CFAT-s 14.35 59.22 27.99dB/0.7504
CFAT-r 13.52 56.27 27.93dB/0.7498
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Figure 1. Performance vs Complexity plot of CFAT compare to
other state-of-the-art models.
Performance: PSNR (on X-axis) in dB. Complexity: Flops (on
Y-axis) in G and Parameters (area of the circle) in M

sic units of CFAT and termed Window Attention Blocks
(WAB). We compose three architectures, CFAT-1 (large),
CFAT (medium), and CFAT-r (reduced), based on model
depth, i.e., the number of WAB units present in CFAT. We
take (8, 8, 8, 8, 8, 8, 8, 8) WAB units for CFAT-1, (8, 8,
8, 8, 8) for CFAT, and (8, 8, 8) for CFAT-r. Here, '8’
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Figure 2. Iterative performance (PSNR in dB) comparison of the proposed CFAT for Top-Left: triangular vs rectangular vs overlapping
attention, Top-Middle: sparse vs dense attention, Top-Right: various interval size, Bottom-Left: small vs medium vs large CFAT model,
Bottom-Middle: various combinations of rectangular (8 x 8, 12 x 12, 16 x 16) with triangular (8 x 8, 16 * 16) windows, and

Bottom-Right: various channel lengths. [on BSD100(x4) for epoch 70]
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Figure 3. Comparing performance (PSNR in dB) of various state-of-the-art models with CFAT on Top-Left: BSD100 for scale 2,

(d) x4 SR on Set 14

(e) x4 SR on Urban 100

(f) x4 SR on Manga 100

Top-Middle: BSD100 for scale 3, Top-Right: BSD100 for scale 4, Bottom-Left: Set14 for scale 4,
Bottom-Middle: Urban100 for scale 4, and Bottom-Right: Mangal09 for scale 4.
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Figure 4. LAM results and corresponding Diffusion Index for CFAT and various SOTA methods.

signifies ’4’ pairs of Shifted-Dense Rectangular Window
MSA ((SD)RW-MSA) and Shifted-Dense Triangular Win-
dow MSA ((SD)TW-MSA) arranged in an alternative fash-
ion. We also consider another CFAT variant with 144 chan-
nels to compete with CFAT-r while finalizing our small vari-
ant. The corresponding parameters, Multiply-Add opera-
tions, and performances are displayed in Tab. 2. To finalize
the small version, we prioritize more on performance over
complexity. This table shows that CFAT with 144 channels
yields higher performance than CFAT-r, while both possess
identical complexity levels. Therefore, we designate CFAT
with 144 channels as our small variant, CFAT-s.

2. Extensive Ablation Study

In this section, we investigate the performance variation
of CFAT under the influence of different hyperparameters

and model units. We evaluate all the model variants on the
BSD100 dataset for scale factor x4 at distinct training itera-
tions. We plot these outcomes in the X-axis along with their
respective iterations in the Y-axis as displayed in Fig. 2. A
large deviation in performance is observed when we eval-
uate the model within the first 17.5k iterations. Therefore,
we adopt an averaging technique to keep the results steady
at iterations of 5k, 7.5k, 10k, 12.5k, 15k, and 17.5k. The
averaging technique is implemented within the iteration or
epoch range of 2.5k iteration or £5 epoch, respectively.
The Top-Left plot shows the outcomes for models taking
rectangular with overlapping attention, triangular with over-
lapping attention and rectangular, triangular with overlap-
ping attention. We find that the last configuration yields
the best results. The Top-Middle plot displays the signifi-
cance of the combined dense-sparse attention-based model



over isolated attention-based models. The Top-Right plot
justifies selecting the interval size as ’2’ over others. The
Bottom-Left plot maps out the performance of three CFAT-
variants: CFAT-1, CFAT, and CFAT-s. Based on perfor-
mances in the Bottom-Middle plot, we decide the best com-
bination of window sizes for rectangular- and triangular-
window attention. We map the model outcomes for three-
channel counts (180, 144, and 96) in the Bottom-Right plot.

3. Extended Comparison with SOTA Architec-
tures

In this section, we evaluate and compare the perfor-
mance of the proposed architecture with other transformer-
based state-of-the-art models. The top three graphs (Top-
Left, Top-Middle, and Top-Right) of Fig. 3 validate the
supremacy of CFAT over SwinIR [4], EDT [3], ACT
[5], and HAT [!] super-resolution (SR) architectures on
BSD100 testing dataset for scales of x2, x3, and x4.
These graphs also justify that our model possesses strong
expressive power for every scale of super-resolution. As
displayed in the bottom three graphs (Bottom-Left, Bottom-
Middle, and Bottom-Right), we also verify the generaliz-
ability of CFAT by evaluating the performance on differ-
ent testing datasets for a fixed scale (x4). All these perfor-
mances are expressed in terms of peak-signal-to-noise ratio
(PSNR). CFAT yields the highest PSNR values for all the
above settings, as shown in this figure.

As visualized in Fig. 4, the LAM attributes [2] and Dif-
fusion Index (DI) [2] of the proposed triangular window-
based CFAT yield superior results than other rectangular
window-based SOTA methods. To check the model’s scal-
ability in a low-data environment, all models are trained on
the DIV2K dataset with batch size 16.

References

[1] Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, and
Chao Dong. Activating more pixels in image super-resolution
transformer. In Computer Vision and Pattern Recognition
(CVPR), pages 22367-22377. IEEE/CVF, 2023. 1, 4

[2] Jinjin Gu and Chao Dong. Interpreting super-resolution net-
works with local attribution maps. In Computer Vision and
Pattern Recognition (CVPR), pages 9199-9208. IEEE/CVF,
2021. 1,4

[3] Wenbo Li, Xin Lu, Jiangbo Lu, Xiangyu Zhang, and Jiaya Jia.
On efficient transformer and image pre-training for low-level
vision. arXiv preprint arXiv:2112.10175, 3(7):8, 2021. 1, 4

[4] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration using
swin transformer. In International Conference on Computer
Vision (ICCV), pages 1833-1844. IEEE, 2021. 1,4

[5] Jinsu Yoo, Taehoon Kim, Sihaeng Lee, Seung Hwan Kim,
Honglak Lee, and Tae Hyun Kim. Enriched cnn-transformer
feature aggregation networks for super-resolution. In Win-

(6]

ter Conference on Applications of Computer Vision (WACV),
pages 4956-4965. IEEE/CVF, 2023. 1, 4

Jiale Zhang, Yulun Zhang, Jinjin Gu, Yongbing Zhang,
Linghe Kong, and Xin Yuan. Accurate image restora-
tion with attention retractable transformer. arXiv preprint
arXiv:2210.01427,2022. 1



	. Extensive Model Analysis
	. Extensive Ablation Study
	. Extended Comparison with SOTA Architectures

