
Neural Fields as Distributions: Signal Processing Beyond Euclidean Space

Supplementary Material

Method PSNR Iterations Inference

Nsampi et al. [21] 24.9 15726 11.2 MP/s
Ours 25.3 322262 22.8 MP/s

Table 4. Video filtering – This test compares methods on applying
a 1D box filter to the time axis of a video. The PSNR is averaged
over 3 300-frame videos with 300x300 resolution, and excludes
the first and last 12 frames to avoid artifacts due to different han-
dling of boundary conditions. Training for all jobs is limited to five
minutes, and evaluation is done at whatever iteration it reaches in
that time. The ground truth filtered frames are computed via aver-
aging sliding windows.

7. Euclidean Filtering Experiments

Details of Euclidean filtering comparisons. For our ex-
periments on image filtering, we use 3 512 ˆ 512 images
(“whale”, “einstein”, and “train”), and apply Gaussian and
box filters to all images at the scales specified. For network
architecture, we use a 4-layer, 256-width MLP with swish
activations [25] and positional encoding. We train using the
Adam optimizer [13], with a constant learning rate of 10´5.
For a minimal example of an implementation of our method
for image filtering, see Fig. 4.

Further experiments. We also perform comparisons to the
baseline of [21] on temporal video filtering, in a similar
setup to that which they report performing. As reported
in Tab. 4, we find the two methods behave similarly for
this task in reconstruction accuracy, as well as in inference
speed, as they use a 1-dimensional box filter, which reduces
the extra network evaluations required.

8. Full non-Euclidean Derivation
For our generalized derivation, we will again start by con-
structing a distribution-like ground-truth field from a non-
negative signal:

p̂pxq “
f̂pxqQpxq

ş

M
f̂px1qQpx1qdµpx1q

. (19)

We will apply the same assumptions as before to our fil-
ter kernels, with the added restriction that they are H-
symmetric. From this point, we can again begin our deriva-
tion from the expression for expected log-likelihood:

ℓpθ|p̂ ˚ kq “ Ex„p̂˚krlogppθpxqqs. (20)

Again, we expand the expectation and convolution, this

import jax
import jax.numpy as jnp
import flax.linen as nn
import optax
import skimage.io
import matplotlib.pyplot as plt

class MLP(nn.Module):
@nn.compact
def __call__(self, x):
net = jnp.concatenate([

jnp.sin(2**i * x) for i in range(8)]
+ [jnp.cos(2**i * x) for i in range(8)]
+ [x], axis=-1)

for i in range(5):
net = nn.Dense(256)(net)
net = nn.relu(net)

return nn.softplus(nn.Dense(3)(net))

gt_image = skimage.io.imread("512x512.jpg")
gt_image = jnp.array(gt_image / 255.0)

def loss(params, rng1, rng2):
i = jax.random.randint(rng1, (4096, 2), 0, 512)
x = i.astype(jnp.float32) / 511.0
v = 0.01 * jax.random.normal(rng2, (4096, 2))
rgb_gt = gt_image[i[:, 1], i[:, 0]]
rgb_pred = MLP().apply(params, x + v) + 1e-6
loss = jnp.mean(

-jnp.log(rgb_pred) * rgb_gt) / jnp.mean(rgb_gt)
loss += jnp.log(jnp.mean(rgb_pred))
loss += (jnp.mean(rgb_pred) - jnp.mean(rgb_gt))**2
return loss

rng = jax.random.PRNGKey(42)
params = MLP().init(rng, jnp.zeros((1, 2)))
optimizer = optax.adam(1e-4)
opt_state = optimizer.init(params)

@jax.jit
def step(params, opt_state, rng):
rng1, rng2, rng_next = jax.random.split(rng, 3)
loss_fn = lambda params: loss(params, rng1, rng2)
grad = jax.grad(loss_fn)(params)
updates, opt_state = optimizer.update(grad, opt_state)
params = optax.apply_updates(updates, params)
return params, opt_state, rng_next

for _ in range(50000):
params, opt_state, rng = step(params, opt_state, rng)

x = jnp.linspace(0.0, 1.0, 512)
X = jnp.stack(jnp.meshgrid(x, x), axis=-1)
pred_image = MLP().apply(params, X)
plt.imshow(pred_image)

Figure 4. This example code provides a complete, minimal exam-
ple of an implementation for our method. Specifically, it trains
a 2D neural field to approximate a 512 ˆ 512 image with a
Gaussian blur applied. The code for our method is available at
https://ubc-vision.github.io/nfd.

time using the definition from (17):

ℓpθ|p̂ ˚ kq “

ż

M

pp̂ ˚ kqpxq logppθpxqqdµpxq, (21)

“

ż

M

ż

M

p̂pηpxqηpvq´1oqkpvq logppθpxqqdµpvqdµpxq.

(22)
1

https://ubc-vision.github.io/nfd


Figure 5. We implement environment map filtering using our
method (Left), which allows lighting an object with a high-
resolution environment map using a single network invocation,
while Monte Carlo filtering (Right) requires thousands of samples
to achieve high quality.

We then write the change of variables as x1 “

ηpxqηpvq´1o, using the group action instead of subtraction:

ℓpθ|p̂ ˚ kq “
ż

M

ż

M

p̂px1qkpvq logppθpηpx1qvqqdµpvqdµpx1q, (23)

“ Ev„k,x„p̂rlogppθpηpxqvqqs. (24)

From here the derivation proceeds exactly as before, again
using the normalization strategy in (9):

ℓpθ|p̂ ˚ kq “

Ev„k,x„p̂

„

log

ˆ

pQ ˚ kqpηpxqvqfθpηpxqvq
ş

M
pQ ˚ kqpx1qfθpx1qdµpx1q

˙ȷ

, (25)

“ Ev„k,x„p̂rlogppQ ˚ kqpηpxqvqqs

` Ev„k,x„p̂rlogpfθpηpxqvqqs

´ logp

ż

M

pQ ˚ kqpxqfθpxqdµpxqq, (26)

“ Ev„k,x„p̂rlogppQ ˚ kqpηpxqvqqs

` Ev„k,x„p̂rlogpfθpηpxqvqqs

´ logpEv„k,x„Qrfθpηpxqvqsq. (27)

Finally, we can again reduce this to a loss function:

LMLE “ Ev„k,x„p̂r´ logpfθpηpxqvqqs

` logpEv„k,x„Qrfθpηpxqvqsq. (28)

This form is equivalent to (13) in the case where M “ Rm

and the group action is vector addition. The same re-
weighting and generalization strategies described for (13)
are also applicable here.

9. Filtering Experiments on S2

Filtering spherical data. We can apply our filtering
method to a variety of neural field-based tasks. For ex-
ample, some prior works have used neural fields to model
environment maps [4, 41]. Environment maps are effec-
tively image data, but defined over the manifold S2 rather
than the more familiar R2. It is also common to require
these maps to be pre-filtered for efficient use in rendering
algorithms [41]. As such, correct filtering of environment
maps requires formulating the filter and convolution oper-
ation as group convolution, specifically via the action of
SOp3q. We show the results of such a pre-filtering opera-
tion implemented via our method in Fig. 5.

10. Light Field Filtering

Lens modelling. We model lens effects as a filter applied
under the action of SEp3q. As the models we apply these
filters to are defined over rays, the filtering operation can
be understood, and implemented, as a process of perturbing
rays from an original ray, interpreted as representing the op-
tical axis of the lens system, to rays which contribute to a
particular region on the virtual “sensor”. We use a simpli-
fied model, based approximately on a thin lens, in which
the ray intersections are assumed to be distributed accord-
ing to an isotropic 2-dimensional Gaussian distribution on
the plane of the lens, as well as a similar Gaussian distribu-
tion on the focal plane, both centered about the optical axis.
This forms a Gaussian beam distribution which converges
towards the focal plane, and diverges away from it.

To demonstrate practical implementation, we apply this
filter to two different styles of light field model: NeRF and
light field networks. For the NeRF experiments, we mod-
ify the implementation of Mip-NeRF 360 [2], specifically
by manipulating the integrated positional encoding to con-
dition the network on the specific filter to be applied. As
standard Mip-NeRF already models a conical distribution
of rays, we need only modify the encoding of this distribu-
tion to match the ray “width” at any given depth to match
our Gaussian beam distribution described above. We then
use the loss function from (14) to train, while drawing ran-
dom perturbations from the distribution of lens parameters
we wish the model to learn.

For light field networks, the process is very similar, ex-
cept that there is no integrated positional encoding. Instead,
we condition the MLP directly on the parameters of the dis-
tribution as an extra input. We construct the network as an
8-layer, 1536-width, relu-activated MLP, with a learnable
Fourier feature basis as positional encoding. We implement
this network within the same codebase as our NeRF imple-
mentation, and all other details are the same as Mip-NeRF
360 training.

2



Motion blur – lifting rays to SEp3q. Some distributions,
which are not rotation-invariant, require lifting the field
from the manifold of rays to SEp3q, an example being fil-
ters representing motion blur. In practical implementations,
this can be achieved in a few ways. First, in cases where
the underlying model uses volume rendering and integrated
positional encoding, it is possible to convolve the sam-
pling Gaussians with a Gaussian distribution representing
the linearization of the action of the SEp3q transformation
at that point in space, which will be accurate as long as ro-
tation angles are not large. We implement this approach
in our modified Mip-NeRF 360 codebase, see our project
page: https://ubc-vision.github.io/nfd.
It is also possible to directly condition a light field net-
work on this extra degree of freedom as a network in-
put.

References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Pe-

ter Hedman, Ricardo Martin-Brualla, and Pratul P. Srini-
vasan. Mip-NeRF: A multiscale representation for anti-
aliasing neural radiance fields. In ICCV, pages 5855–5864,
2021. 2, 8

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 2, 8

[3] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-
based neural radiance fields. In ICCV, pages 19697–19705,
2023. 2

[4] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T.
Barron, Ce Liu, and Hendrik Lensch. NeRD: Neural re-
flectance decomposition from image collections. In ICCV,
pages 12684–12694, 2021. 2

[5] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. 6

[6] Michael Bronstein, Joan Bruna, Taco Cohen, and Petar
Veličković. Geometric deep learning. African Master in Ma-
chine Intelligence, 2022. 2, 7

[7] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, 2019. 2

[8] Boyang Deng, John P. Lewis, Timothy Jeruzalski, Gerard
Pons-Moll, Geoffrey Hinton, Mohammad Norouzi, and An-
drea Tagliasacchi. NASA: neural articulated shape approxi-
mation. In ECCV, pages 612–628. Springer, 2020. 3

[9] Marc Finzi, Samuel Stanton, Pavel Izmailov, and An-
drew Gordon Wilson. Generalizing convolutional neural net-
works for equivariance to lie groups on arbitrary continuous
data. In ICML, pages 3165–3176, 2020. 2

[10] Ruohan Gao, Yen-Yu Chang, Shivani Mall, Li Fei-Fei, and
Jiajun Wu. ObjectFolder: A dataset of objects with implicit
visual, auditory, and tactile representations. arXiv preprint
arXiv:2109.07991, 2021. 2

[11] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. ICML, 2020. 2

[12] Robert V. Hogg, Joseph W. McKean, and Allen T. Craig. In-
troduction to Mathematical Statistics (6th Edition). Prentice
Hall, 2004. 3, 4

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015. 1

[14] Risi Kondor and Shubhendu Trivedi. On the generalization
of equivariance and convolution in neural networks to the
action of compact groups. In ICML, pages 2747–2755, 2018.
2, 7

[15] David B. Lindell, Dave Van Veen, Jeong Joon Park, and Gor-
don Wetzstein. BACON: Band-limited coordinate networks
for multiscale scene representation. In CVPR, pages 16252–
16262, 2022. 1, 2

[16] Li Ma, Xiaoyu Li, Jing Liao, Qi Zhang, Xuan Wang, Jue
Wang, and Pedro V Sander. Deblur-NeRF: Neural radiance
fields from blurry images. In CVPR, pages 12861–12870,
2022. 8

[17] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
pages 4460–4470, 2019. 2

[18] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 1,
2

[19] Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, Peter
Hedman, Ricardo Martin-Brualla, and Jonathan T. Barron.
MultiNeRF: A Code Release for Mip-NeRF 360, Ref-NeRF,
and RawNeRF, 2022. 8

[20] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM TOG, 41(4):1–15, 2022. 2

[21] Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Sei-
del, Tobias Ritschel, and Thomas Leimkühler. Neural field
convolutions by repeated differentiation. ACM TOG, 2023.
1, 3, 4, 6, 8

[22] Jen-I Pan, Jheng-Wei Su, Kai-Wen Hsiao, Ting-Yu Yen, and
Hung-Kuo Chu. Sampling neural radiance fields for refrac-
tive objects. In SIGGRAPH Asia 2022 Technical Communi-
cations, pages 1–4, 2022. 8

[23] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In CVPR, pages 165–174, 2019. 2

[24] Stanislav Pidhorskyi, Timur Bagautdinov, Shugao Ma, Jason
Saragih, Gabriel Schwartz, Yaser Sheikh, and Tomas Simon.
Depth of field aware differentiable rendering. ACM TOG, 41
(6):1–18, 2022. 8

[25] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Search-
ing for activation functions. ICLR, 2018. 1

[26] François Rouvière et al. Symmetric spaces and the
Kashiwara-Vergne method. Springer, 2014. 7

3

https://ubc-vision.github.io/nfd


[27] Mehdi S.M. Sajjadi, Henning Meyer, Etienne Pot, Urs
Bergmann, Klaus Greff, Noha Radwan, Suhani Vora, Mario
Lučić, Daniel Duckworth, Alexey Dosovitskiy, et al. Scene
representation transformer: Geometry-free novel view syn-
thesis through set-latent scene representations. In CVPR,
pages 6229–6238, 2022. 2

[28] Liyue Shen, John Pauly, and Lei Xing. NeRP: implicit neu-
ral representation learning with prior embedding for sparsely
sampled image reconstruction. IEEE Transactions on Neural
Networks and Learning Systems, 2022. 2

[29] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh
Tenenbaum, and Fredo Durand. Light field networks: Neu-
ral scene representations with single-evaluation rendering.
NeurIPS, 34:19313–19325, 2021. 1, 2, 8

[30] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and
Ameesh Makadia. Light field neural rendering. In CVPR,
pages 8269–8279, 2022. 2

[31] Peder Bergebakken Sundt and Theoharis Theoharis. Marf:
The medial atom ray field object representation. Computers
& Graphics, 115:122–136, 2023. 1

[32] Yee Whye Teh, Max Welling, Simon Osindero, and Geof-
frey E. Hinton. Energy-based models for sparse overcom-
plete representations. Journal of Machine Learning Re-
search, 4(Dec):1235–1260, 2003. 5

[33] Yinhuai Wang, Shuzhou Yang, Yujie Hu, and Jian Zhang.
NeRFocus: Neural radiance field for 3d synthetic defocus.
arXiv preprint arXiv:2203.05189, 2022. 8

[34] Ziyu Wang, Wei Yang, Junming Cao, Qiang Hu, Lan Xu,
Junqing Yu, and Jingyi Yu. NeReF: Neural refractive field
for fluid surface reconstruction and rendering. In 2023
IEEE International Conference on Computational Photog-
raphy (ICCP), pages 1–11. IEEE, 2023. 8

[35] Zijin Wu, Xingyi Li, Juewen Peng, Hao Lu, Zhiguo Cao,
and Weicai Zhong. DoF-NeRF: Depth-of-field meets neural
radiance fields. In ACM MM, pages 1718–1729, 2022. 8

[36] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-
kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in
visual computing and beyond. In Comput. Graph. Forum,
pages 641–676. Wiley Online Library, 2022. 2, 3

[37] Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and
Zhangyang Wang. Signal processing for implicit neural rep-
resentations. In NeurIPS, 2022. 1, 3

[38] Guandao Yang, Sagie Benaim, Varun Jampani, Kyle Genova,
Jonathan Barron, Thomas Funkhouser, Bharath Hariharan,
and Serge Belongie. Polynomial neural fields for subband
decomposition and manipulation. NeurIPS, 35:4401–4415,
2022. 2

[39] Guangming Zang, Ramzi Idoughi, Rui Li, Peter Wonka, and
Wolfgang Heidrich. IntraTomo: self-supervised learning-
based tomography via sinogram synthesis and prediction. In
ICCV, pages 1960–1970, 2021. 2

[40] Yifan Zhan, Shohei Nobuhara, Ko Nishino, and Yinqiang
Zheng. NeRFrac: Neural radiance fields through refractive
surface. In ICCV, pages 18402–18412, 2023. 8

[41] Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and
Noah Snavely. PhySG: Inverse rendering with spherical

gaussians for physics-based material editing and relighting.
In CVPR, pages 5453–5462, 2021. 2

4


