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Method PSNR Iterations Inference

Nsampi et al. [21] 24.9 15726 11.2 MP/s
Ours 25.3 322262 22.8 MP/s

Table 4. Video filtering – This test compares methods on applying
a 1D box filter to the time axis of a video. The PSNR is averaged
over 3 300-frame videos with 300x300 resolution, and excludes
the first and last 12 frames to avoid artifacts due to different han-
dling of boundary conditions. Training for all jobs is limited to five
minutes, and evaluation is done at whatever iteration it reaches in
that time. The ground truth filtered frames are computed via aver-
aging sliding windows.

7. Euclidean Filtering Experiments

Details of Euclidean filtering comparisons. For our ex-
periments on image filtering, we use 3 512 ˆ 512 images
(“whale”, “einstein”, and “train”), and apply Gaussian and
box filters to all images at the scales specified. For network
architecture, we use a 4-layer, 256-width MLP with swish
activations [25] and positional encoding. We train using the
Adam optimizer [13], with a constant learning rate of 10´5.
For a minimal example of an implementation of our method
for image filtering, see Fig. 4.

Further experiments. We also perform comparisons to the
baseline of [21] on temporal video filtering, in a similar
setup to that which they report performing. As reported
in Tab. 4, we find the two methods behave similarly for
this task in reconstruction accuracy, as well as in inference
speed, as they use a 1-dimensional box filter, which reduces
the extra network evaluations required.

8. Full non-Euclidean Derivation
For our generalized derivation, we will again start by con-
structing a distribution-like ground-truth field from a non-
negative signal:

p̂pxq “
f̂pxqQpxq

ş

M
f̂px1qQpx1qdµpx1q

. (19)

We will apply the same assumptions as before to our fil-
ter kernels, with the added restriction that they are H-
symmetric. From this point, we can again begin our deriva-
tion from the expression for expected log-likelihood:

ℓpθ|p̂ ˚ kq “ Ex„p̂˚krlogppθpxqqs. (20)

Again, we expand the expectation and convolution, this

import jax
import jax.numpy as jnp
import flax.linen as nn
import optax
import skimage.io
import matplotlib.pyplot as plt

class MLP(nn.Module):
@nn.compact
def __call__(self, x):
net = jnp.concatenate([

jnp.sin(2**i * x) for i in range(8)]
+ [jnp.cos(2**i * x) for i in range(8)]
+ [x], axis=-1)

for i in range(5):
net = nn.Dense(256)(net)
net = nn.relu(net)

return nn.softplus(nn.Dense(3)(net))

gt_image = skimage.io.imread("512x512.jpg")
gt_image = jnp.array(gt_image / 255.0)

def loss(params, rng1, rng2):
i = jax.random.randint(rng1, (4096, 2), 0, 512)
x = i.astype(jnp.float32) / 511.0
v = 0.01 * jax.random.normal(rng2, (4096, 2))
rgb_gt = gt_image[i[:, 1], i[:, 0]]
rgb_pred = MLP().apply(params, x + v) + 1e-6
loss = jnp.mean(

-jnp.log(rgb_pred) * rgb_gt) / jnp.mean(rgb_gt)
loss += jnp.log(jnp.mean(rgb_pred))
loss += (jnp.mean(rgb_pred) - jnp.mean(rgb_gt))**2
return loss

rng = jax.random.PRNGKey(42)
params = MLP().init(rng, jnp.zeros((1, 2)))
optimizer = optax.adam(1e-4)
opt_state = optimizer.init(params)

@jax.jit
def step(params, opt_state, rng):
rng1, rng2, rng_next = jax.random.split(rng, 3)
loss_fn = lambda params: loss(params, rng1, rng2)
grad = jax.grad(loss_fn)(params)
updates, opt_state = optimizer.update(grad, opt_state)
params = optax.apply_updates(updates, params)
return params, opt_state, rng_next

for _ in range(50000):
params, opt_state, rng = step(params, opt_state, rng)

x = jnp.linspace(0.0, 1.0, 512)
X = jnp.stack(jnp.meshgrid(x, x), axis=-1)
pred_image = MLP().apply(params, X)
plt.imshow(pred_image)

Figure 4. This example code provides a complete, minimal exam-
ple of an implementation for our method. Specifically, it trains
a 2D neural field to approximate a 512 ˆ 512 image with a
Gaussian blur applied. The code for our method is available at
https://ubc-vision.github.io/nfd.

time using the definition from (17):

ℓpθ|p̂ ˚ kq “

ż

M

pp̂ ˚ kqpxq logppθpxqqdµpxq, (21)

“

ż

M

ż

M

p̂pηpxqηpvq´1oqkpvq logppθpxqqdµpvqdµpxq.

(22)
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Figure 5. We implement environment map filtering using our
method (Left), which allows lighting an object with a high-
resolution environment map using a single network invocation,
while Monte Carlo filtering (Right) requires thousands of samples
to achieve high quality.

We then write the change of variables as x1 “

ηpxqηpvq´1o, using the group action instead of subtraction:

ℓpθ|p̂ ˚ kq “
ż

M

ż

M

p̂px1qkpvq logppθpηpx1qvqqdµpvqdµpx1q, (23)

“ Ev„k,x„p̂rlogppθpηpxqvqqs. (24)

From here the derivation proceeds exactly as before, again
using the normalization strategy in (9):

ℓpθ|p̂ ˚ kq “

Ev„k,x„p̂

„

log

ˆ

pQ ˚ kqpηpxqvqfθpηpxqvq
ş

M
pQ ˚ kqpx1qfθpx1qdµpx1q

˙ȷ

, (25)

“ Ev„k,x„p̂rlogppQ ˚ kqpηpxqvqqs

` Ev„k,x„p̂rlogpfθpηpxqvqqs

´ logp

ż

M

pQ ˚ kqpxqfθpxqdµpxqq, (26)

“ Ev„k,x„p̂rlogppQ ˚ kqpηpxqvqqs

` Ev„k,x„p̂rlogpfθpηpxqvqqs

´ logpEv„k,x„Qrfθpηpxqvqsq. (27)

Finally, we can again reduce this to a loss function:

LMLE “ Ev„k,x„p̂r´ logpfθpηpxqvqqs

` logpEv„k,x„Qrfθpηpxqvqsq. (28)

This form is equivalent to (13) in the case where M “ Rm

and the group action is vector addition. The same re-
weighting and generalization strategies described for (13)
are also applicable here.

9. Filtering Experiments on S2

Filtering spherical data. We can apply our filtering
method to a variety of neural field-based tasks. For ex-
ample, some prior works have used neural fields to model
environment maps [4, 41]. Environment maps are effec-
tively image data, but defined over the manifold S2 rather
than the more familiar R2. It is also common to require
these maps to be pre-filtered for efficient use in rendering
algorithms [41]. As such, correct filtering of environment
maps requires formulating the filter and convolution oper-
ation as group convolution, specifically via the action of
SOp3q. We show the results of such a pre-filtering opera-
tion implemented via our method in Fig. 5.

10. Light Field Filtering

Lens modelling. We model lens effects as a filter applied
under the action of SEp3q. As the models we apply these
filters to are defined over rays, the filtering operation can
be understood, and implemented, as a process of perturbing
rays from an original ray, interpreted as representing the op-
tical axis of the lens system, to rays which contribute to a
particular region on the virtual “sensor”. We use a simpli-
fied model, based approximately on a thin lens, in which
the ray intersections are assumed to be distributed accord-
ing to an isotropic 2-dimensional Gaussian distribution on
the plane of the lens, as well as a similar Gaussian distribu-
tion on the focal plane, both centered about the optical axis.
This forms a Gaussian beam distribution which converges
towards the focal plane, and diverges away from it.

To demonstrate practical implementation, we apply this
filter to two different styles of light field model: NeRF and
light field networks. For the NeRF experiments, we mod-
ify the implementation of Mip-NeRF 360 [2], specifically
by manipulating the integrated positional encoding to con-
dition the network on the specific filter to be applied. As
standard Mip-NeRF already models a conical distribution
of rays, we need only modify the encoding of this distribu-
tion to match the ray “width” at any given depth to match
our Gaussian beam distribution described above. We then
use the loss function from (14) to train, while drawing ran-
dom perturbations from the distribution of lens parameters
we wish the model to learn.

For light field networks, the process is very similar, ex-
cept that there is no integrated positional encoding. Instead,
we condition the MLP directly on the parameters of the dis-
tribution as an extra input. We construct the network as an
8-layer, 1536-width, relu-activated MLP, with a learnable
Fourier feature basis as positional encoding. We implement
this network within the same codebase as our NeRF imple-
mentation, and all other details are the same as Mip-NeRF
360 training.
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Motion blur – lifting rays to SEp3q. Some distributions,
which are not rotation-invariant, require lifting the field
from the manifold of rays to SEp3q, an example being fil-
ters representing motion blur. In practical implementations,
this can be achieved in a few ways. First, in cases where
the underlying model uses volume rendering and integrated
positional encoding, it is possible to convolve the sam-
pling Gaussians with a Gaussian distribution representing
the linearization of the action of the SEp3q transformation
at that point in space, which will be accurate as long as ro-
tation angles are not large. We implement this approach
in our modified Mip-NeRF 360 codebase, see our project
page: https://ubc-vision.github.io/nfd.
It is also possible to directly condition a light field net-
work on this extra degree of freedom as a network in-
put.
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